

Table of Contents

Preface

Part I
Chapter 1 Decision Support and Computational Intelligence
1.1 Overview
1.2 The Need for Decision Support Agents
1.3 Computerized Decision Support Mechanisms
1.4 Computational Intelligence for Decision Support
1.5 A Remark on Terminology
1.6 Data, Information and Knowledge
1.7 Issues to be Discussed in this Book
Summary
Self-examination Questions
References

Chapter 2 Search and Representation
2.1 Overview
2.2 Sample Problems and Applications of Computational Intelligence

2.2.1 Some Simple Examples
2.2.2 Applications

2.3 Definition of Computational Intelligence
2.3.1 Historical Development of Computational Intelligence
2.3.2 Computational Intelligence as Agent-Based

Problem Solving
2.3.3 Measuring the Intelligence: Turing Test

2.4 Basic Assumptions of Computational Intelligence
2.4.1 Symbolism
2.4.2 Sequential or Parallel
2.4.3 Logic-based Approach
2.4.4 Human Intelligence as Metaphor
2.4.5 Summary

2.5 Basic Storage and Search Structures
2.5.1 Abstract Data Types and Data Structures
2.5.2 Linear Structures: Lists, Stacks, Queues and

Priority Queues
2.5.3 Trees
2.5.4 Index Structures for Data Access
2.5.5 Discrimination Trees for Information Retrieval
2.5.6 Graphs
2.5.7 Remarks on Search Operation

2.6 Problem Solving Using Search
2.6.1 Meanings of Search

2.6.2 State Space Search
2.6.3 Remarks on Scaling Up

2.7 Representing Knowledge for Search
2.7.1 Levels of Abstraction In Computational Intelligence

Problem Solving
2.7.2 Using Abstract Levels
2.7.3 Programming Languages for Computational

Intelligence
2.8 State Space Search

2.8.1 Uninformed Search (Blind Search)
2.8.2 Heuristic Search

2.9 Remark on Constraint-Based Search
2.10 Planning And Machine Learning as Search

2.10.1 Planning as Search
2.10.2 Symbol-Based Machine Learning as Search

Summary
Self-examination Questions
References

Chapter 3 Predicate Logic
3.1 Overvie
3.2 First Order Predicate Logic

3.2.1 Bascis
3.2.2 Propositional Calculus
3.2.3 Predicates
3.2.4 Quantifiers
3.2.5 Knowledge Base
3.2.6 Inference Rules
3.2.7 Substitution, Unification, Most General Unifier
3.2.8 Resolution -- The Basic Idea

3.3 Prolog for Computational Intelligence
3.3.1 Basics of Prolog
3.3.2 Sample Prolog Programs
3.3.3 Summary of Important Things About Prolog

3.4 Abduction and Induction
3.4.1 Other Forms of Reasoning
3.4.2 Induction
3.4.3 Abduction

3.5 Nonmonotonic Reasoning
3.5.1 Meaning of Nonmonotonic Reasoning
3.5.2 Commonsense Reasoning
3.5.3 Circumscription
3.5.4 Summary of Nonmonotonic Reasoning

Summary
Self-examination Questions
References

Chapter 4 Relations as Predicates
4.1 Overview
4.2 The Concept of Relation
4.3 Overview of Relational Data Model

4.3.1 Schema and Instance
4.3.2 Declarative and Procedural Languages

4.4 Relational Algebra
4.4.1 Preview of Relational Algebra
4.4.2 How to form a Relational Algebra Query from a Given

English Query
4.4.3 Relational Algebra: Fundamental Operators
4.4.4 Relational Algebra: Additional Operators
4.4.5 Combined Use of Operators
4.4.6 Extended RA Operations

4.5 Relational Views and Integrity Constraints
4.5.1 Virtual Views and Materialized Views
4.5.2 Integrity Constraints

4.6 Functional Dependencies
4.6.1 Definition of Functional Dependency
4.6.2 Keys and Functional Dependencies
4.6.3 Inference Rules: Armstrong Axioms
4.6.4 Closures and Canonical Cover
4.6.5 Algorithms for Finding Keys from

Functional Dependencies
4.6.6 Referential Integrity

4.7 Basics of Relational Database Design
4.7.1 What is the Meaning of a Good Design and

Why Study It?
4.7.2 Boyce-Codd Normal Form (BCNF) and

Third Normal Form (3NF)
4.7.3 Remarks on Normal Forms and Denormalization
4.7.4 Desirable Features for Decomposition --

"Global" Design Criteria
4.7.5 Decomposition Algorithms

4.8 Multivalued Dependencies
4.8.1 Various Forms of Dependencies
4.8.2 Multivalued Dependencies
4.8.3 Fourth Normal Form (4NF)

4.9 Remark on Object-Oriented Logical Data Modeling
4.10 Basics Of Deductive Databases

4.10.1 Limitation of RA And SQL
4.10.2 Basics of Datalog
4.10.3 Deductive Query Evaluation

4.11 Knowledge Representation Meets Databases
Summary
Self-examination Questions

References

Chapter 5 Retrieval Systems
5.1 Overview
5.2 Database Management Systems (DBMS)

5.2.1 Basics of Database Management System
5.2.2 Three Levels of Data Abstraction
5.2.3 Schema Versus Instances
5.2.4 Data Models
5.2.5 Database Languages
5.2.6 Components of Database Management Systems

5.3 Commercial Languages for Data Management Systems
5.3.1 Basic Remarks on Commercial Languages
5.3.2 Basic Structure of SQL Query
5.3.3 Examples of SQL Queries
5.3.4 Writing Simple SQL Queries
5.3.5 Working With SQL Programs: General Steps
5.3.6 Remarks on Integrity Constraints
5.3.7 Aggregate Functions
5.3.8 Remarks on Enhancement of SQL

5.4 Basics of Physical Database Design
5.4.1 Storage Media
5.4.2 File Structures and Indexing
5.4.3 Tuning Database Schema

5.5 An Overview of Query Processing and Transaction Processing
5.5.1 Query Processing
5.5.2 Basics of Transaction Processing
5.5.3 How Transaction Processing is Related to

Query Processing
5.6 Information Retrieval (IR)

5.6.1 Differences Between DBMS and IR Systems
5.6.2 Basics of Information Retrieval
5.6.3 Web Searching, Database Retrieval, and IR

5.7 Data Warehousing
5.7.1 Basics of Parallel and Distributed Databases
5.7.2 Data Warehousing and Decision Support
5.7.3 Middleware

5.8 Rule-Based Expert Systems
5.8.1 From Data and Information Retrieval to

Knowledge Retrieval
5.8.2 Deductive Retrieval Systems
5.8.3 Relationship with Key Interests in

Computational Intelligence
5.8.4 Basics of Expert Systems
5.8.5 Production System Model
5.8.6 Knowledge Engineering

5.8.7 Building Rule-Based Expert Systems
5.8.8 Some Other Aspects
5.8.9 CLIPS: A Brief Overview

5.9 Knowledge Management and Ontologies
5.9.1 What is Knowledge Management?
5.9.2 Information Technology for Knowledge Management
5.9.3 Data and Knowledge Management Ontologies

Summary
Self-examination Questions
References

Chapter 6 Conceptual Data and Knowledge Modeling
6.1 Overview
6.2 Entity-Relationship Modeling

6.2.1 What is the Entity-Relationship (ER) Approach?
6.2.2 A Simple Example
6.2.3 Major Constructs
6.2.4 Some Important Concepts
6.2.5 Design Issues in ER Modeling
6.2.6 Mapping ER Diagrams into Relations
6.2.7 Keys in Converted Tables
6.2.8 An Example: A Banking Enterprise
6.2.9 Extended ER Features and Relationship with

Object-Oriented Modeling
6.3 Remark on Legacy Data Models
6.4 Knowledge Modeling for Knowledge Representation
6.5 Structured Knowledge Representation

6.5.1 Some Important Issues Involved in
Knowledge Representation and Reasoning

6.5.2 Basics of Structured Knowledge Representation
Schemes

6.6 Frame Systems
6.6.1 Basics of Frames
6.6.2 Classes, Subclasses and Instances
6.6.3 Inheritance, Multi-Level and Multiple Inheritance

6.7 Conceptual Graphs
6.7.1 What is a Conceptual Graph?
6.7.2 Using Linear Form to Represent Conceptual Graphs
6.7.3 Operations
6.7.4 Logic-Related Aspects
6.7.5 Remarks on Synergy of Frame Systems,

Conceptual Graphs and Object Orientation
6.8 User Modeling and Flexible Inference Control
Summary
Self-examination Questions
References

Part II
Chapter 7 Reasoning As Extended Retrieval
7.1 Overvieww
7.2 Beyond Exact Retrieval

7.2.1 Some Forms of Non-Exact Retrieval
7.2.2 Basics of Analogical Reasoning

7.3 Reasoning as Query-Invoked Memory Re-Organization
7.3.1 Reasoning as Extended Retrieval
7.3.2 Structure Mapping for Suggestion-Generation
7.3.3 Document Storage and Retrieval Through

Relational Database Operations
7.3.4 Generating Suggestions

7.4 Summary
Self-examination Questions
References

Chapter 8 Computational Creativity And Computer Assisted
Human Intelligence

8.1 Overview
8.2 Computational Aspects of Creativity

8.2.1 Remarks on Creativity
8.2.2 Theoretical Foundation for Stimulating Human

Thinking
8.2.3 Creativity in Decision Support Systems

8.3 Idea Processors
8.3.1 Basics of Idea Processors
8.3.2 Common Components in Idea Processors
8.3.3 How Idea Processors Work
8.3.4 The Nature of Idea Processors

8.4 Retrospective Analysis for Scientific Discovery and
Technical Invention

8.4.1 Retrospective Analysis of Technical Invention
8.4.2 Retrospective Analysis for Knowledge-Based

Idea Generation of New Artifacts
8.4.3 A Prolog Program to Explore Idea Generation

8.5 Combining Creativity With Expertise
8.5.1 The Need for Combining Creativity with Expertise
8.5.2 Strategic Knowledge as Knowledge Related to

Creativity
8.5.3 Studying Strategic Heuristics of Creative Knowledge
8.5.4 Difficulties and Problems in Acquiring

Strategic Heuristics
8.5.5 The Nature of Strategic Heuristics
8.5.6 Toward Knowledge-Based Architecture

Combining Creativity and Expertise

Summary
Self-examination Questions
References

Chapter 9 Conceptual Queries and Intensional Answering
9.1 Overview
9.2 A Review of Question Answering Systems

9.2.1 What is a Question Answering System?
9.2.2 Some Features of Question Answering

9.3 Intensional Answering and Conceptual Query
9.3.1 Meaning of Intensional Answers
9.3.2 Intensional Answering Using Knowledge Discovery
9.3.3 Conceptual Query Answering
9.3.4 Duality Between Conceptual Queries and

Intensional Answers
9.4 An Approach for Intensional Conceptual Query Answering

9.4.1 Introduction
9.4.2 Constructing an Abstract Database for

Intensional Answers
9.4.3 Generating Intensional Answers for Conceptual Queries
9.4.4 Method for Intensional Conceptual Query Answering

Summary
Self-examination Questions
References

Part III
Chapter 10 From Machine Learning to Data Mining
10.1 Overview
10.2 Basics of Machine Learning

10.2.1 Machine Learning: Definition and Approches
10.3 Inductive Learning

10.3.1 Generalization for Induction
10.3.2 Candidate Elimination Algorithm
10.3.3 ID3 Algorithm and C4.5

10.4 Efficiency and Effectiveness of Inductive Learning
10.4.1 Inductive Bias
10.4.2 Theory of Learnability

10.5 Other Machine Learning Approaches
10.5.1 Machine Learning in Neural Networks
10.5.2 Evolutionary Algorithms for Machine Learning
10.5.3 Summary of Machine Learning Methods

10.6 Features of Data Mining
10.6.1 The Popularity of Data Mining
10.6.2 KDD versus Data Mining
10.6.3 Data Mining versus Machine Learning
10.6.4 Data Mining versus Extended Retrieval

10.6.5 Data Mining versus Statistic Analysis and
Intelligent Data Analysis

10.6.6 Data Mining Mechanism:
Data Mining from a Database Perspective

10.6.7 Summary of Features
10.7 Categorizing Data Mining Techniques

10.7.1 What is to be Discovered
10.7.2 Discovery or Prediction
10.7.3 Symbolic, Connectionism and Evolutionary

Algorithms
10.7.4 Classifying Data Mining Techniques

10.8 Association Rules
10.8.1 Terminology
10.8.2 Finding Association Rules Using Apriori Algorithm
10.8.3 More Advanced Studies of Association Rules

Summary
Self-examination Questions
References

Chapter 11 Data Warehousing, OLAP and Data Mining
11.1 Overview
11.2 Data Mining in Data Warehouses
11.3 Decision Support Queries, Data Warehouse and OLAP

11.3.1 Decision Support Queries
11.3.2 Architecture of Data Warehouses
11.3.3 Basics of OLAP

11.4 Data Warehouse as Materialized Views and Indexing
11.4.1 Review of a Popular Definition
11.4.2 Materialized Views
11.4.3 Maintenance of Materialized Views
11.4.4 Normalization and Denormalization of

Materialized Views
11.4.5 Indexing Techniques for Implementation

11.5 Remarks on Physical Design of Data Warehouses
11.6 Semantic Differences Between Data Mining and OLAP

11.6.1 Different Types of Queries can be Answered at
Different Levels

11.6.2 Aggregation Semantics
11.7 Nonmonotonic Reasoning in Data Warehousing Environment
11.8 Combining Data Mining and OLAP

11.8.1 An Architecture Combining OLAP and Data Mining
11.8.2 Some Specific Issues

11.9 Conceptual Query Answering in Data Warehouses
11.9.1 Materialized Views and Intensional Answering
11.9.2 Rewriting Conceptual Query using Materialized Views

11.10 Web Mining

11.10.1 Basic Approaches for Web Mining
11.10.2 Discovery Techniques on Web Transactions

Summary
Self-examination Questions
References

Chapter 12 Reasoning Under Uncertainty
12.1 Overview
12.2 General Remarks on Uncertain Reasoning

12.2.1 Logic and Uncertainty
12.2.2 Different Types of Uncertainty and Ontologies of

Uncertainty
12.2.3 Uncertainty and Search

12.3 Uncertainty Based on Probability Theory
12.3.1 Basics of Probability Theory
12.3.2 Bayesian Approach
12.3.3 Bayesian Networks
12.3.4 Bayesian Network Approach for Data Mining
12.3.5 A Brief Remark on Influence Diagram and

Decision Theory
12.3.6 Probability Theory with Measured Belief and Disbelief

12.4 Fuzzy Set Theory
12.4.1 Fuzzy Sets
12.4.2 Fuzzy Set Operations
12.4.3 Resolution in Possibilistic Logic

12.5 Fuzzy Rules and Fuzzy Expert Systems
12.5.1 Fuzzy Relations
12.5.2 Syntax and Semantics of Fuzzy Rules
12.5.3 Fuzzy Inference Methods

12.6 Using FuzzyCLIPS
12.7 Fuzzy Controllers

12.7.1 Basics of Fuzzy Controller
12.7.2 Building Fuzzy Controller Using FuzzyCLIPS
12.7.3 Fuzzy Controller Design Process

12.8 The Nature of Fuzzy Logic
12.8.1 The Inconsistency of Fuzzy Logic
12.8.2 Why Fuzzy Logic has been Successful in

Expert Systems
12.8.3 Implication to Mainstream Computational Intelligence

Summary
Self-examination Questions
References

Chapter 13 Reduction and Reconstruction Approaches for
 Uncertain Reasoning and Data Mining

13.1 Overview

13.2 The Reduction-Reconstruction Duality
13.2.1 Reduction and Reconstruction Aspects in

Fuzzy Set Theory
13.2.2 Reconstruction and Data Mining

13.3 Some Key Ideas of K-systems Theory and Rough Set Theory
13.3.1 Reconstructability Analysis using K-systems Theory
13.3.2 Reduction-Driven Approach in Rough Set Theory
13.3.3 K-Systems Theory versus Rough Set Theory

13.4 Rough Sets Approach
13.4.1 Basic Idea of Rough Sets
13.4.2 Terminology
13.4.3 An Example
13.4.4 Rule Induction Using Rough Set Approach
13.4.5 Applications of Rough Sets

13.5 K-systems Theory
Summary
Self-examination Questions
References

Part IV
Chapter 14 Toward Integrated Heuristic Decision Making
14.1 Overview
14.2 Integrated Problem Solving
14.3 High Level Heuristics for Problem Solving and Decision Support

14.3.1 A Return to General Problem Solver
14.3.2 Some High Level Heuristics
14.3.3 Summary of Heuristics

14.4 Meta-Issues for Decision Making
14.4.1 Meta Issues in Databases and Data Warehouses
14.4.2 Meta-Knowledge and Meta-Reasoning
14.4.3 Meta-Knowledge and Meta-Patterns in Data Mining
14.4.4 Meta-Learning
14.4.5 Summary and Remark on Meta-Issues

Summary
Self-examination Questions
References

Preface

WHY THIS BOOK IS NEEDED
Decision support refers to applications involving comprehensive analysis

and exploration of current and historical data in organizations to support high-
level decision making. Intelligent decision support relies on many techniques
provided by various disciplines such as computational intelligence (or
artificial intelligence, AI) and database management systems (DBMS).
Artificial intelligence is the science of building intelligent agents (an agent is a
system which acts intelligently). Recently an alternative term computational
intelligence has gained popularity. By emphasizing specific computational
mechanisms underlying (or behind) symbolic reasoning process rather than
focusing on controversial issues around symbolic reasoning itself (as in AI),
computational intelligence provides a solid approach to effectively achieve
many goals of artificial intelligence. (In this preface, we will use the terms AI
and computational intelligence interchangeably.)

Although there are excellent books on AI, DBMS and decision support
systems, few (if any exist at all) of these books address their relationship in a
holistic manner. The conventional view on the role of AI and DBMS in
decision support is that decision support can be assisted by these techniques.
Although this perspective is not wrong, it does not reflect the intrinsic
connection between AI and DBMS on the one hand and decision support on
the other.

In contrast to the conventional perspective, we view computational
intelligence as the science developed for decision support (as well as for other
applications). This perspective will not only allow a more active (thus more
accurate) role of computational intelligence in decision support, but also
provide a natural bridge to connect computational intelligence with DBMS.
Note that the key aspect contributed by computational intelligence to decision
support is the concept of reasoning, while the key aspect contributed by
DBMS (and in other information retrieval systems) to decision support is the
concept of retrieval. By viewing reasoning as extended retrieval, we can
effectively integrate computational intelligence and DBMS for intelligent
decision support. This book will exploit this unique perspective.

WHAT READERS CAN EXPECT FROM THIS BOOK
The book is written as a concise textbook with some noticeable features.
(a) The book presents an integrated approach that can quickly push the

interested scholars to the frontier of intelligent decision support. Readers who
do not have enough background can take advantage of the first six chapters of
this book which provide a necessary foundation for the entire book. Readers
with sufficient background may skip over some sections in early chapters (see
organization of the book below). However, in order to follow the integrated

treatment of the materials, it is recommended for the reader to read the whole
book, but with emphasis on certain chapters of greatest interest.

(b) The book may benefit readers from different disciplines and can be used
at different levels (to be explained in "How to use the book"). Note that this
treatment is not intended to blur the boundaries of different computer science
disciplines; our purpose is just to encourage an integrated way of thinking
which is a critical element of decision making. There are materials taken from
existing books because they are nice, but there are more materials not found in
any individual book. We cover some selected, matured computational
intelligence techniques useful for decision support; we should not only
correctly apply these techniques, but also analyze the indications (such as
similarities or differences) behind these techniques, and identify invariants
shared by various techniques. With emphasis on applications, we have made a
compromise between theoretical rigorous and practical concerns. We cover
some most recent developments in data mining and data warehousing, yet we
still stick with the most important principles of intelligent decision making. In
addition, we are interested in using folk psychology to implement systems to
assist human intelligence. (that is, we will include materials from "sidetrack
AI").

(c) Readers can easily follow the book because it is written in a concise
manner. Many chapters contain plenty of examples to illustrate well-selected
materials. This can help the reader to focus on the materials of particular
interest. Although intended for real-world applications, examples in this book
are made simple so that readers can follow the various basic ideas discussed.
The author has tried to make each chapter independent (although chapters or
sections may cite each other).

(d) A list of self-examination questions is attached with each chapter. In
addition, in most summary sections (at the end of chapters) we provide
bibliographical remarks for further readings. The reading list contains a small
set of well-selected research papers (or monographs) and extends the materials
covered in that chapter. Thus the book can also be used as a reference book.

HOW THIS BOOK IS ORGANIZED
The contents of this book can be roughly divided into four parts. The

organization of the book is sketched below.
Six chapters in Part I provide an overview for necessary background

information. These chapters can be used together as an introductory textbook
covering parts of these fields.

Part II (Chapters 7-9) further explores the notion of inference as extended
retrieval. Starting from an overview of conceptual modeling, we discuss
several aspects usually not covered in AI or DBMS textbooks, such as
computational creativity. We also pay attention to conceptual queries and
intensional answers, as well as their relationships. Part II will help the reader
to understand the intrinsic relationship between computational intelligence
and decision support, namely, why computational intelligence is important to
decision support.

Part III (Chapters 10-13) presents some most important techniques of
computational intelligence which are useful for decision support. Materials are
selected to be representative in this field. Rather than a miscellaneous
collection of a "technique show," materials are presented in a manner to foster
an integrated way of scientific thinking. In order to provide a common ground
for various techniques to be discussed, we start with a discussion on data
warehousing environments which have been used as a popular platform for
decision support. Various data mining techniques are discussed, with the focus
on the unique features of each technique. In addition, fuzzy set theory, rough
sets, and genetic algorithms are selected to illustrate different but
complementary techniques needed for decision support. We encourage readers
to compare these techniques as well as different perspectives behind these
techniques.

To understand where these approaches are from is important to reveal some
"technical invariant" behind scientific thinking. Although it is difficult to
predict where future techniques will go, an in-depth study of existing
techniques will help readers be prepared to deal with technical challenges to
be encountered in the future. Some techniques may fade away (or be absorbed
into newer techniques), but many key ideas will still last. Due to these
considerations, in the last part of this book (Chapter 14), we wrap up by
discussing common features of methods, as well as providing high-level
heuristics for integrated problem solving.

HOW TO USE THIS BOOK: INSTRUCTORS, STUDENTS,
SCIENTISTS, LEISURE READERS

For instructors:
Although this book is intended as a coherent whole, expected to be covered

by following the sequence of chapter numbers, each chapter is written in a
self-contained manner. The writing of the book follows a module design
principle so that different components (parts or chapters) can be grouped in a
flexible manner.

For instructors, the book can be adopted for several different courses. It can
be used at the junior/senior level as an introductory AI textbook in computer
science (CS) or information technology (IT). The instructor should elaborate
certain chapters including Chapter 2, covering materials such as state space
search, knowledge representation and reasoning, and expert systems. On the
other hand, certain chapters in Part II should be skipped. The instructor should
also provide programming assignments for students to practice basic concepts
in computational intelligence. Alternatively, the book can serve a junior/senior
level DBMS course with emphasis on conceptual modeling. If the book is
used this way, certain chapters such as Chapters 7 and 12 should be skipped.

The book may also be applied to a course of decision support systems in
information technology (IT) or management information sciences (MIS). If it
is so used, the instructor may skip some technical detail but put more
emphasis on integration of related tools, emphasizing data warehousing, data

mining and soft computing. Additional materials (including case studies)
should be provided to illustrate how these computational techniques can be
used in decision support, assisted with case studies. Due to the comprehensive
nature of this course, materials not emphasized in lectures can be assigned as
reading materials for the students. The book does not cover any detail in query
processing and transaction processing in DBMS. However, if you are
interested in the approach presented in this book and what to extend it to
DBMS, please contact the author at the email address listed at the end of
preface.

This text is also suitable for a first year graduate course focusing on
intelligent decision support. If the book is used in this manner, it should be
accompanied by recent research papers organized by the instructor. For
example, if this book is used as the starting point for studying data mining, a
detailed reading list available in Chapter 10 can be used for this purpose.

For students:
Since this book is intended not to be too technical, students will find that

most of this book is not difficult to read. You should read the chapters
assigned by the instructor, and feel free to read the rest. However, you should
not stop at "I understand the sentences presented in the text." Unless you have
practiced the knowledge, you will not be able to master it. You should make a
serious effort to answer the self-examination questions and do other
assignments given by the instructor. Do not be satisfied with what these
techniques are, but always ask yourself how and why these techniques are
useful for decision support.

For graduate students, this book serves as a road map for your own
research. With the advise of your instructor, you should read a small number
of technical papers as indicated in the reading list, present your comments,
and consider how to apply the theory or how to improve/extend the work. You
may not be able do much in a regular semester, but you may elaborate on your
findings for your thesis or graduate project (if you are so interested).

For scientists and leisure readers:
Although I recommend that you read from the first chapter to the last

chapter, you can pick whatever you like to read. For scientists from disciplines
other than computer science, information technology and management
information systems, I encourage you to compare the way of scientific
thinking as described in this book with your own discipline. For leisure
readers, you will find that the information superhighway is not just full of
traffic of techniques, but traffic of scientific thinking as well. You will find
philosophical thoughts behind techniques may be different from those
provided by professional philosophers. Whether you are a casual reader or a
sophisticated thinker/practitioner, the book may present a novel way for you
to understand computational intelligence for decision making. Comments,
criticism and suggestions are welcome.

Comments, criticisms and suggestions are welcome. Please contact me at
zchen@unomaha.edu.

www.zchen@unomaha.edu

Chapter 1

DECISION SUPPORT AND COMPUTATIONAL
INTELLIGENCE

1.1 OVERVIEW

In this chapter we provide a brief overview on the notion of decision
support, and the role of computational intelligence in decision support.
Starting with the notion of decision support as problem solving, we elaborate
the need for decision support agents. The role of computational intelligence
for decision support is then briefly examined, and several remarks on
computational intelligence are given. Since decision support is concerned with
integrated management of data and knowledge, a comparative discussion on
data and knowledge is also provided. This discussion is followed by a remark
on the importance of a holistic, retrospective, cross-domain analysis for
integrated data and knowledge management. Some important issues to be
covered in this book are briefly discussed.

1.2 THE NEED FOR DECISION SUPPORT AGENTS

The need for computerized mechanism for decision support comes from
well-known limits of human knowledge-processing: Studies suggest that a
person's capacity for processing the contents of his or her immediate field of
awareness is limited to manipulating up to about seven pieces of knowledge at
any one time. The stress, errors and oversights that can result from being
overloaded with knowledge can be just as detrimental as not having enough
knowledge. In addition, a person may not be especially skilled at some kinds
of knowledge manipulations (e.g., mathematical ones). It has been noticed that
the need for support for human decision makers is due to four kinds of limits:
cognitive limits, economic limits, time limits and competitive demands
[Holsapple and Whinston 1996]. Various kinds of support can be provided,
such as
• User alert (alerting the user to a decision-making opportunity or

challenge);
• Problem recognition (recognizing problems that need to be solved as part

 of the decision making process);
• Problem solving;
• Facilitating/extending the user's ability to process knowledge (e.g.,

acquire, transform, explore the knowledge);

• Stimulation (stimulating the user's perception, imagination, or creative
insight);

• Coordinating/facilitating interactions (among participants in multi-
participant decision makers); and

• Others.
The task of decision support can be carried out by constructing intelligent

agents. The term agent is used to refer to any person, program, or device
capable of reasoning and decision making. It is often useful for an agent to be
aware of what it knows or believes or what some other agent believes. An
intelligent agent can perceive the environment and act rationally based on
reasoning (a discussion on intelligent agent can be found in Chapter 2).

In order to understand how decision support agents can provide help, we
now take a brief look at different forms of computerized decision support.

1.3 COMPUTERIZED DECISION SUPPORT
MECHANISMS

The task of decision support can be carried out by decision support systems.
A decision support system (DSS) refers to a computerized system which
assists management decision making by combining data, sophisticated
analytical models and tools, and user-friendly software into a powerful system
than can support semi-structured or unstructured decision making in
organizations. DSSs are computer-mediated tools that assist managerial
decision making by presenting information and interpretations for various
alternatives. Such systems can help the decision makers to make more
effective and efficient choices [Radermacher 1994]. DSS provides users with
a flexible set of tools and capabilities for analyzing important blocks of data.
A DSS must be simple, robust, easy to control, adaptive, complete on
important issues, and easy to communicate with. A DSS emphasizes change,
flexibility and a quick response. A DSS can also evolve as the decision maker
learns more about the problem. In many cases, managers cannot specify in
advance what they want from computer programmers and model builders.

However, the concept of decision support is not restricted to decision
support systems as briefly summarized above. For example, recently,
decision support queries have drawn more and more attention from
organizations. Such queries comprehensively analyze/explore current and
historical data, identify useful trends and create summaries of data to support
high-level decision making for knowledge workers, which refers to executives,
managers, as well as analysts. On-Line Analytical Processing (OLAP)
[Chaudhuri and Dayal 1997] and data mining [Chen, Han and Yu 1996] are
useful tools for answering users' ad hoc decision support queries.

In this book we use the term decision support in a broad sense. It could be
decision support for business management, decision support for management
of engineering, as well as others.

1.4 COMPUTATIONAL INTELLIGENCE FOR DECISION
SUPPORT

 Computational intelligence is the field of studying how to build intelligent
agents. To see why computational intelligence is important to decision
support, we can take a look at the decision support process.

Decision making is a process of choosing among alternative courses of
action for the purpose of attaining a goal or goals, and decision support shares
many important concern with decision making. Managerial decision making is
synonymous with the whole process of management. The decision-making
process is basically identical with the problem-solving process. Computational
intelligence provides useful theories and applicable techniques needed by
decision support problem solving as identified in [Holsapple and Whinston
1996]. Reasoning has been shown to be a critical aspect of decision making. It
forms the basis for evaluation and judging information that has been received.
Perception and cognition are being recognized increasingly as critical
elements of effective decision making. Intelligent information systems will
incorporate these elements along with expert systems that act as decision
advisors. Human reasoning underlies intelligent information systems because
such systems will have to be sensitive to the manger's cognitive ability.

A decision depends on the information perceived and how well it is
understood. Knowledge workers rely on their perceptions and cognitive
abilities when using information. Where perception or cognition limits their
effectiveness, an intelligent information system can supplement their abilities.
An effective manager is one who perceives problems correctly and knows
how to respond to a situation using analytic techniques, when required, and
exercising judgment to find good solutions. In addition, the task of decision
support also demands other desirable features, such as imagination and
creativity. Computational creativity and computer-assisted human intelligence
can provide valuable help for decision makers in this regard.

1.5 A REMARK ON TERMINOLOGY

 The term artificial intelligence (AI) was coined by John McCarthy in 1954
and has been widely used in United States and many other parts of the world.
This may not be a perfect term, because the word "artificial" is somewhat
controversial. Since then, several other competing terms have also been

proposed, such as machine intelligence, computational intelligence, and more
recently, soft computing. Unfortunately, these alternative terms also caused
some confusion by themselves. Since the term machine intelligence has been
mainly used as an alias of artificial intelligence in early history of AI and is no
longer a major contender, here we will give brief comments on the other two
terms. This discussion will also be helpful in defining the scope of this book.

For many researchers in Canada, the term computational intelligence is just
the Canadian brand of artificial intelligence. In this sense, computational
intelligence has existed for several decades. However, a more popular
understanding of the term "computational intelligence" refers to different
research interests existing under the umbrella of artificial intelligence. This
caused a de facto split and eventually, in the late 1980s and early 1990s, the
term "computational intelligence" emerged as a discipline different from AI.
According to [Bezdek 1992], in the strictest sense, computational intelligence
depends on numerical data supplied by manufacturers and does not rely on
knowledge. Therefore, artificial neural networks should be called as
computational intelligence. It is interesting to note that several well-known
publication databases (including INSPEC) categorize publications using both
terms of computational intelligence and artificial intelligence, with only 14-
33% of overlap (for articles published up to 1992).

Another popular term is soft computing. According to [Zadeh 1996], it
refers to the discipline situated at the confluence of distinct methodologies:
fuzzy logic, neural network and probabilistic reasoning, the latter including
evolutionary algorithms, chaos theory, causal networks, and so on. According
to the contents listed here, soft computing is almost like an alias of
computational intelligence defined by Bezdek. One thing we want to
emphasize is that the term soft computing indicates a paradigm shift away
from the original interest of artificial intelligence. To understand this, we just
need to remember where the word "soft" is from: Soft computing differs from
conventional (hard) computing in that, unlike hard computing, it is tolerant of
imprecision, uncertainty and partial truth. Although in effect, the role model
for soft computing is the human mind [Zadeh 1994], it puts emphasis on the
underlying computational tools. Note that soft computing methods themselves
(such as fuzzy set theory, rough set theory, neural networks, genetic
algorithms, etc.) are just computational tools. (A recent discussion on quantum
computational intelligence has also put emphasis on quantum computing
[Hirsh 1999].) For this reason in this book we will not use this term, but we
remind the reader to remember the close relationship between computational
intelligence and soft computing.

We have chosen materials developed under either the umbrella of artificial
intelligence or computational intelligence, so long as they can contribute to
decision support. Our viewpoint about these two terms can be explained as
follows. We believe these two fields largely overlap, but each does have a
different emphasis. Artificial intelligence has a discipline of science, whereas
computational intelligence has a stronger flavor of engineering.
Computational intelligence seemingly has more fruitful results in business and

engineering applications. Nevertheless, artificial intelligence was the original
motive of studying computerized intelligence, and still sets the tone for such
kind of studies.

To avoid confusion caused by terminology, in this book we will stay with
the term "computational intelligence." We will emphasize the materials which
have important applications to decision support, including features of some
soft computing techniques, various machine learning methods, as well as
others. However, we do not restrict ourselves to applications alone, because
we believe that without a good understanding of the basic underlying theories
related to these applications, we will not have a comprehensive understanding
on the role of computational intelligence to decision making. That is why this
book starts with a discussion on the basics of computational intelligence (such
as issues related to symbolic reasoning). Since our main interests are on the
use of computerized intelligence for decision making, we will take a practical
approach to deal with materials which may involve sophisticated theoretical
work in computational intelligence.

1.6 DATA, INFORMATION AND KNOWLEDGE

In order to understand the role of intelligent agents for decision support, we
need a holistic view on the tasks to be carried out for decision support.
Typically, decision support in organizations requires the following two kinds
of management:
• Data management. The data management includes the database which

contains relevant data for the situation and is managed by a database
management system.

• Knowledge management. It handles various tasks involved in reasoning.
An important notion discussed throughout this book is knowledge, which

consists of facts and inference rules used for reasoning. Knowledge could be
procedural, which refers to knowing how to do something, or declarative,
which refers to knowing that something is true or false. Commonsense
knowledge refers to the knowledge a normal child possesses and has played an
important role in computational intelligence. In addition, we can talk about
tacit knowledge (or unconscious knowledge), which refers to knowledge
cannot be expressed in language (for example, nodding). The study of
knowledge is referred to as epistemology. (Another useful philosophical term
is ontology , which refers to systematic study of being. Knowledge
management, as to be discussed in Chapter 5, in concerned with ontology.)
 In order to better understand the importance of knowledge, it would be
beneficial to take a look at the hierarchy of knowledge (see Figure 1.1, which
is revised from [Giarratano and Riley 1998]. At the bottom of this hierarchy is
the data, which is filtered from noise. Processed data is referred to as
information, indicating or measuring how much we know from the underlying
data. (In a loose sense, data can be viewed as the primitive form of

information.) Information used by agents to solve a problem will be referred
to as knowledge . We say we can access information, but only an agent
possesses the knowledge. Traditionally, knowledge has been associated with
the concept of belief, which refers to statements that are inside the mind of an
agent or can be inferred by the agent. These statements do not have to be true,
and can be believed to varying degrees [Delgrande and Mylopoulos 1987,
Poole, Mackworth and Goebel 1998]. Belief is thus concerned with the mental
status of the agents. Without considering the mental status of the agents, it
would be difficult to distinguish knowledge from information. Despite the
differences between data and knowledge, however, both are useful in problem
solving for decision support. In fact, a successful integration of management
of both data and knowledge is the focal concern of this book. Finally, at the
top of the hierarchy, we have meta-knowledge. Just like knowledge can be
used to manipulate the data, knowledge itself can be manipulated by meta-
knowledge, which refers to knowledge about knowledge (more discussion on
meta-knowledge can be found in Chapter 14).

Figure 1.1 Hierarchy of abstraction

1.7 ISSUES TO BE DISCUSSED IN THIS BOOK

Computational intelligence for decision support is interdisciplinary in
nature. In this book, we will examine important issues related to decision
support, particularly those related to management of databases and knowledge
bases. In order to study these issues to some depth, we will examine selected
fundamental aspects in computational intelligence. Studying these aspects will
help us to understand why computational intelligence is important to decision
making, where the challenges are from, and how to integrate them.

Several features of this book have already been discussed in the Preface and
will not be repeated here. Some additional remarks follow. One remark is on

 Meta-
 Knowledge

 Knowledge

 Information

 Data

Noise

Belief

agents. An agent-based perspective can thread various research directions
within computational intelligence in a holistic manner. In addition, this
perspective allows us to extend our discussion to the materials which do not
fall in computational intelligence proper, such as integrity constraints in
relational databases and agent-based data mining. Throughout this book,
agent-based considerations will be emphasized. We take a simple but useful
idea to thread the materials together, namely, reasoning as involved in
intelligence is viewed as extended retrieval. This perspective helps us to
bridge the gap between these two types of information systems, such as the
different scales between them. An agent-based approach makes this unified
perspective possible.

Next, a remark on integration itself. There are many aspects of integration:
Integration of systems, integrated use of problem solving methods, integrated
use of tools, and, most importantly, integrated way of thinking for problem
solving. We will focus on most of these aspects throughout this book (except
for integrated use of tools, which is not within the scope of this book). Since
management of data has been a focal concern in decision support, we will also
pay much attention on database management as well, even though it is not part
of computational intelligence. A holistic view of data and knowledge will help
us to understand the similarity as well as the difference between them (such as
scaling-up problems of computational intelligence to match database
management) and reduce the hurdle of integration of different types of
systems. This allows a unified treatment of various topics, such as the role of
agent in DBMS, and unified treatment of machine learning and data mining
(this is only possible when data and knowledge are discussed in the same,
rather than separate, context).

Successful decision support requires integration of data management and
knowledge management. To achieve such integration, a cross-domain analysis
is needed to combine the studies previous carried out in different disciplines.
As noted by [Klir 1985], traditional science, such as mathematics, chemistry
or physics, is one-dimension in nature. Scientific studies have passed the one-
dimensional science into a two-dimensional science period. The two-
dimensional science is characterized by a cross-domain study, that is, it
focuses on the relational rather than individual aspects of isolated domains,
and its integration with the traditional disciplines of science. Systems theory
has been developed for this purpose. This kind of study continues the vein of
cybernetics, which is based on the recognition that information-related
problems can be meaningfully and beneficially studied, at least to some
extent, independently of any specific context. In addition, due to the nature of
cross-domain analysis, the interdisciplinary examination should be carried out
as a retrospective analysis. Although the task of intelligent decision support
does not require us to pay attention to systems theory itself, a holistic view of
the problem solving process and an integrated treatment of data and
knowledge management are among the most important things we should keep
in mind.

Computational intelligence has achieved tremendous success, but there
have been many hypes as well as critics about computational intelligence.
Starting from next chapter, we will discuss the basics of computational
intelligence, which serves as the starting point of studying intelligent decision
support. A good understanding on the nature of computational intelligence
will help us to establish a realistic attitude toward computational intelligence
for decision making.

SUMMARY

In this chapter we provided an overview of computational support for
decision making. In this summary section we provide some references related
to general aspects of this topic. [Brodie et al. 1984, Brodie and Mylopoulos
1986, Delgrande and Mylopoulos 1987] discuss important issues related to
integrated database and knowledge base management. They were published in
1980s, but many important points made there are still valid. A nice reference
source is the four volume handbook [Barr and Feigenbaum1981].

Some recent computational intelligence textbooks include [Russell and
Norvig, 1995, Poole, Mackworth and Goebel, 1998, Luger and Stubblefield,
1998]. Other textbooks include [Winston 1992; Rich and Knight 1991]. A
discussion on intelligent agent-assisted decision support systems can be found
in [Wang 1997]. Discussion on the term "computational intelligence" can be
found in [Bezdek 1992, Bezdek 1994, Marks 1993, Zurada, Marks II and
Robinson, 1994]. A recent textbook covering several major branches of
computational intelligence (in the sence of [Bezdek 1994] is [Pedrycz 1996].

Decision support systems and the role of computational intelligence are
widely discussed in literature, including [Radermacher 1994, Holsapple and
Whinston 1996].

SELF-EXAMINATION QUESTIONS

1. Why is computational intelligence important to decision support? Answer
this question by collecting two or three case studies from your own
organization, news papers or magazines.

2. Make your own examples to compare data versus information, and data
versus knowledge.

3 . Make your own example to illustrate why interdisciplinary problem
solving is important.

REFERENCES

Bezdek, J. C., On the relationship between neural networks, pattern
recognition and intelligence, The International Journal of Approximate
Reasoning, 6, 85-107, 1992.
Bezdek, J. C., What is computational intelligence? Computational
Intelligence Imitating Life (Zurada, J. M., Marks II, R. J. and Robinson, C. J.
eds.), pp. 1-12, IEEE Press, 1994.
Brodie, M., L., Mylopoulos, J. and Schmidt, J. W., On Conceptual
Modelling: Perspectives from Artificial Intelligence, Databases, and
Programming Languages, Springer-Verlag, New York, 1984.
Brodie, M. L., and Mylopoulos, J. (eds.), On Knowledge Base Management
Systems: Integrating Artificial Intelligence and Database Technologies,
Springer-Verlag, New York, 1986.
Chaudhuri, S. and U. Dayal, An overview of data warehousing and OLAP
Technology, SIGMOD Record, 26(1), 65-74, 1997.
Chen, M. S., Han, J. and Yu, P. S., Data mining: An overview from a
database perspective, IEEE Transactions on Knowledge and Data
Engineering, 8(6), 866-883. 1996.
Delgrande, J. P. and Mylopoulos, J., Knowledge representation: Features of
knowledge, in Fundamentals of Artificial Intelligence: An Advanced Course
(Bibel W. and Jorrand, Ph. eds.), pp. 3-38, 1987.
Giarratano, J. and Riley, G., Expert Systems: Principles and Programming
(3rd ed.), PWS Publishing, Boston, 1998.
Hirsh, H., A quantum leap for AI (Trends & Controversies column), IEEE
Intelligent Systems & Their Applications, 14(4), 9-18, 1999.
Holsapple, C. W. and Whinston, A. B., Decision Support Systems: A
Knowledge-Based Approach, West Publishing Company, Minneapolis/St.
Paul, 1996.
Klir, C. J., Architecture of Systems Problem Solving, Plenum Press, New
York, 1985.
Marks II, R. J., Intelligence: Computational versus artificial, I E E E
Transactions on Neural Networks, 4 (5), 1993.
Pedrycz, W., Computational Intelligence, CRC Press, Boca Raton, 1996.
Poole, C., Mackworth, A. and Goebel. R., Computational Intelligence: A
Logical Approach, Oxford University Press, New York, 1998.
Radermacher, F. J., Decision support systems: Scope and potential. Decision
Support Systems, 12, 257-265, 1994.
Rich, E. and Knight, K., Artificial Intelligence (2nd ed.), McGraw-Hill, New
York, 1991.
Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach,
Prentice Hall, Englewood Cliffs, NJ, 1995.

Wang, H., Intelligent agent-assisted decision support systems: Integration of
knowledge discovery, knowledge analysis, and group decision support, Expert
Systems with Applications, 12(3), 323-335, 1997.
Winston, P. H., Artificial Intelligence (3rd ed.), Addison Wesley, Reading,
MA, 1992.
Zadeh, L., Fuzzy Logic, Neural Networks, and Soft Computing.
Communications of the ACM, 37(3), 77-86, 1994.
Zurada, J. M., Marks II, R. J. and Robinson, C. J., Introduction,
Computational Intelligence Imitating Life (J. M. Zurada, R. J. Marks II and C.
J. Robinson eds.), pp. v - xi, IEEE Press, 1994.

Chapter 2

SEARCH AND REPRESENTATION

2.1 OVERVIEW

In this chapter we provide an overview on computational intelligence.
Starting with some sample problems studied by computational intelligence,
we define computational intelligence as construction of intelligent agents and
examine some underlying assumptions of computational intelligence. Since
agents solve problems through searching, the emphasis of this chapter is on
search methods. The first half of this chapter (Sections 2.2 to 2.4) provides a
general discussion on computational intelligence. The second half (Section 2.5
to 2.10) is devoted to two key ideas in symbol-based computational
intelligence: search and representation. We first discuss some data structures
needed for data search and space state search. Basic algorithms for blind
search and heuristic search are then studied. We also discuss basic issues
related to representing knowledge for search. Therefore, this chapter provides
a roadmap of the entire book.

2.2 SAMPLE PROBLEMS AND APPLICATIONS OF
COMPUTATIONAL INTELLIGENCE

2.2.1 SOME SIMPLE EXAMPLES

We use the following examples to illustrate what kinds of problems are
handled in computational intelligence.

Example 1. Consider the following simple puzzle (which will be referred to
as the FWGC puzzle).

A farmer with his wolf, goat, and cabbage come to the edge of a
river they wish to cross. There is a boat at the river's edge (west bank
or east bank). The boat can only carry two things (including the only
rower, the farmer) at a time. If the wolf is ever left alone with the
goat, the wolf will eat the goat. If the goat is left alone with the
cabbage, the goat will eat the cabbage. How will you solve the
problem by devising a sequence of crossings of the river?

In order to explain the problem and solve it, in Figure 2.1 we first use an
intuitive representation (part (a) of the figure) to illustrate the problem solving
process, and in part (b) we indicate a more abstract way to solve the same
problem.

Figure 2.1 FWGC Puzzle

Figure 2.1 (a) shows how the problem can be solved step by step on a piece
of paper. For example, the first step indicates the action of "farmer takes
cabbage" (a legal move) cross the river. Figure 2.1 (a) thus illustrates the
important role of state space search in problem solving. A state is a
configuration that is described by a set of variables along with their values.
The set of states involved in the problem solving is referred to as the state
space. Problem solving can thus be conducted as searching in this space. If we
can find a path (which consists of various states involved in the problem
solving process) from the initial state (the state we start with the problem
solving) to the goal state (the state we want to reach), then the problem is
solved. In order to make such a search feasible, an appropriate representation
of a state is important. In the FWGC puzzle, a state can be represented as an
ordered list of four variables, with each variable representing the current
location (east bank, e, or west back, w) of one of the objects (farmer, wolf,
goat and cabbage -- in this order). So if farmer and goat are at the west bank
while wolf and cabbage are at the east bank, that state is represented as
[wewe]. The initial state in this problem can be represented as [wwww] while
the goal state can be represented as [eeee]. You may check the following path

[wwww] → [wewe] → [wwew] → [eeew] → [weww] → [eewe]

→ [wewe] → [eeee]

is indeed a solution. How to find this solution path? Various search algorithms
(such as depth first search) can be used and will be summarized in a later
section.

Example 2. The eight puzzle (8-puzzle). Consider the following board
configuration. Eight (8 = 32 - 1) differently numbered tiles are fitted into 32

spaces on a grid. One space is left blank so that tiles can be moved around to
form different patterns. For example, Figures 2.2 (a) and (b) represent an
initial state and a goal state, respectively. We are looking for a solution path
from (a) to (b). Notice that the regulation requires that any legal change of the

West bank East bank [FWGC]

 FWGC [wwww] (initial state)
 W C FG→ F G [wewe]

 FW C ←F G [wwew

 C FW→ FWG [eeew]

 F GC ←FG W [weww]

 G FC→ FW C [eewe]

 F G ←F W C [wewe]

 FG→ FWGC [eeee] (goal state)
(a) Intuitive representation (b) State representation

state must involve the move of the blank. For example, we may shift tile 8
down; this move can also be viewed as moving the blank up (so that 8 is
shifted down). Note also that we cannot directly swap two tiles (for example,
swap tiles 8 and 3) because no tile can be lifted up from the plain where it is
positioned. Therefore, for the state shown in (a), only four moves are allowed:
move the blank up, down, left, or right. Restrictions like these will be referred
to as legal move rules or mandatory rules (to be distinguished from heuristic
rules discussed later).

2 8 3 1 2 3

1 4 8 4

7 6 5 7 6 5

(a) …… (b)
 Initial state Goal state

Figure 2.2 8-Puzzle

From the initial state we move to the following states; each is referred to as
the child of the original state (notice they are constructed following the
mandatory rules), as shown in Figure 2.3.

2 8 3
1 4
7 6 5

2 8 3 2 3 2 8 3 2 8 3
1 4 1 8 4 1 4 1 6 4

7 6 5 7 6 5 7 6 5 7 5
Figure 2.3 Generating child nodes in search

So which child state should be taken? We may try one of them, using a
well-known search algorithm (such as breadth first or depth first, see Section
2.8). To improve the efficiency, however, we may also use some criterion to
select the "best" state (instead of doing a "blind" search.) Figure 2.4 depicts an
example of a solution path which can be obtained on a piece of paper.

2 8 3 2 3 2 3 1 2 3 1 2 3
1 4 1 8 4 1 8 4 8 4 8 4
7 6 5 7 6 5 7 6 5 7 6 5 7 6 5

Figure 2.4 A solution path

How to solve this problem using a computer? We can represent the board as
a two-dimensional array, and represent each tile accordingly (see Figure 2.5).

For example, in the initial state, tile 2 is in position X = 1 and Y = 3, or simply
(1, 3). Similarly, tile 8 is in position (2,3) while tile 6 is in position (2, 1).
 Y

2 8 3
1 4
7 6 5

 X
Figure 2.5 Representing a state in 8-puzzle probelm

Alternatively, we can represent the board using a 1-dimensional array (or
list). The following is an example of how to define positions:

{1}{2}{3}
{4}{5}{6}
{7}{8}{9}

The initial state can now be represented as an ordered list [2, 8, 3, 1, 0, 4, 7,
6, 5] (here 0 represent the blank). This is to say position {1} holds tile 2,
position {2} holds tile 8, etc.

Up to this point you may think we have just talked about computerized
problem solving. Indeed we have. However, the problems we just discussed
share some basic features. Both require "intelligence," but this kind of
intelligence is different from that which is used to solve many other
computational problems, such as those using mathematical equations. Both
require representing the current situation as "states," and problem solving is
carried out as state space search. In addition, we may also notice that there is
a need for a criterion so that a "good" choice can be made to more effectively
solve the problem.

Example 3. The previous two examples illustrate the importance of
constructing spaces for problem solving. However, other important aspects are
also needed. Consider the following simple puzzle.

Mozart visited Vienna three times, and he died there. On which of the
th r e e v is it s d id h e d ie ?

Th is p u zz le is s o m ew h at d i f f er en t f r o m t h o s e s e en ea r l ier , an d y o u k n o w
the answer -- it is seemingly quite straightforward. But how could you get the
answer? How would you write a computer program to produce the answer? In
order to solve this problem, you have to start with some assumptions, which
are used as background knowledge, and then represent the knowledge in a
form so that state space search can be conducted. You should be able to
answer these questions after you finish reading this and next chapters.

2.2.2 APPLICATIONS

So far we have only discussed toy problems. However, computational
intelligence problems go far beyond those. The following are some real-world
applications.

Application 1. Expert systems. Expert systems are computer programs for
problem solving in some specific domains (such as medicine, car
troubleshooting, etc.) in a manner similar to human experts. Expert systems
have been one of the most successful application areas in computational
intelligence. As an example, consider a simple expert system concerning
personal finance state, which is revised from [Dunken 1995]. A portion of the
And/Or tree is shown in Figure 2.6. Note that Case 2 in this figure illustrates
an and node where conditions "client is middle age," "job is steady" and
"client has children" should be satisfied at the same time. It is preferable to
use an arc to connect the branches involved in an and node. Note also that in
this figure, only a portion of the structure is shown, and each box indicates a
subtree which is not shown. Expert systems will be examined in Chapter 5.

Figure 2.6 A portion of an and/or tree used by an expert system

Application 2. Robotics. Robotics is the science and engineering for
building robots that are capable of performing certain atomic actions. For
example, the PEBBLES robot being developed at the MIT AI lab is a
prototype microrover for the 2003 mission to Mars. PEBBLES' exploration
tasks, which include navigation, visual exploration, and sample rock
collection, are selected and performed in the complete absence of human
teleoperation.

Application 3. Computer chess. The Deep Blue chess machine became the
first computer program to beat a reigning world chess champion (Gary
Kasparov) in May 1997. It is a parallel supercomputer that processes an
average of 200 million chess positions per second.

Additional examples can be found in game playing, perception (receiving
information from sensors and acting), natural language understanding, as well
as many others. As we will see later in this book, computational intelligence
has many important contributions to various aspects of decision support.

Investment goal is X

 Investment goal is conservative Investment goal is
 Aggressive

 Case 2
 Case 3
 Client has children
Case 1
 Client job is steady
is middle age

2.3 DEFINITION OF COMPUTATIONAL INTELLIGENCE

2.3.1 HISTORICAL DEVELOPMENT OF COMPUTATIONAL
INTELLIGENCE

The field of computational intelligence (or artificial intelligence) began to
emerge as a separate field of study during the mid-20th century when the
computer became a commercial reality. Prior to that time, a number of pioneer
works were beginning to mature. Among the developments were the work of
logicians such as Alonzo Church, Kurt Godel, Emil Post and Alan Turing; the
new field of cybernetics which was proposed by Norbert Wiener to bring
together many parallels between human and machine; the work in formal
grammars; as well as others. The mid-1950s are generally recognized as the
official birth date of computational intelligence when the term "artificial
intelligence" (AI) was coined. Computational intelligence is interdisciplinary
in nature, and has overlap with many fields such as engineering, mathematics,
linguistics, cognitive science and philosophy.

2.3.2 COMPUTATIONAL INTELLIGENCE AS AGENT-BASED
PROBLEM SOVLING

Pioneers in computational intelligence defined it as "the science of making
machines do things that would require intelligence if done by men." Since this
definition is too general, many efforts have been made to make it more
concrete. Several popular definitions can be found in [Russell and Norvig
1995]. As already mentioned, computational intelligence is now defined as the
study and construction of intelligent agents. An agent is something that
perceives and acts [Russell and Norvig 1995]. The following important
aspects of the concept of agent should be emphasized:
• Agents are (semi)autonomous: Each agent has certain responsibilities in

problem solving with little or no knowledge of either what other agents
do or how they do it.

• Agents are "situated": Each agent is sensitive to its own surrounding
environments and usually has no knowledge of the full domain of all
agents.

• Agents are interactional and the society of agents is structured: Agents
cooperate on a particular task.

• The phenomenon of intelligence in this environment is "emergent": The
overall cooperative result of the society of agents can be viewed as
greater than the sum of its individual contributors.

• Agents versus objects: It would be beneficial to compare agents with
objects as discussed in the object-oriented paradigm. There are many
similarities between these two, including the fact that both of them
support anthropomorphism (namely, demonstrate human-like behavior).

However, there are also important differences; particularly, agents are
more active than objects.

Features described above indicate that the concept of agent is very
powerful. Because of this, agent-based approaches have rapidly gaining
popularity. As a result, many venders have labeled their products as "agent-
based," or have included agent-based components in their products. In order to
prevent misuse of the "agent" concept, it is important to check the definition
(or required features) of agent to verify these claims.

As a simple example of how intelligent agents can benefit human beings,
consider the following scenario [Chen 1999a]. Suppose you are a researcher
or an upper-level college student working on a research paper for a course
project. To fulfill your research need, you ask intelligent agents for help. You
specific task is:

Give me a hard copy of the recent article "MoneyExpress: An
inventive agent for fast money-making" in Journal of Intelligent
Agents by J. Robertson, K. Chen and M. Williams.

Later in the day, you may receive several follow-up messages. The
following is from agent A:

The article is not found in the specified journal. Do you want me to
send a memo to my friend (also an intelligent agent) J to conduct a
Web search for relevant materials on intelligent money-making?

Another message was sent by agent B:
The article is not found in the specified journal (probably yet to
appear). However, I found a article with the same title on last year's
Conference Proceedings on Intelligent Agents, written by K. Cohen,
R. Robertson and M. Williams. Assuming "Chen" is a misspelling of
"Cohen," these two articles were written by the same group of
authors, and may be very similar in contents. I have asked my friend
T (an intelligent agent) to produce a photocopy for you.

Of course you are impressed by agent B because (among other things) she
is able to correct possible human errors. But even agent A has demonstrated
some admirable traits, because he is able to communicate with other agents
and is able to take an initiative, rather than passively execute human
instructions (just as agent A did).

Various search algorithms used by agents have been developed. Some of
them will be discussed later in this chapter. The role of agents in intelligent
decision making will be discussed throughout this book. Discussion on
intelligent agents can also be found in [[Bienkowski 1998, Hayes 1999].

2.3.3 MEASURING THE INTELLIGENCE: TURING TEST

The Turing test measures the performance of an allegedly intelligent
machine against that of a human being, arguably the best and only standard
for intelligent behavior. The test places the machine and a human counterpart
in rooms apart from another human, the interrogator. The interrogator is not
able to see or speak directly to either of them, does not know their identity,

and can only communicate with them by using a textual device such as a
terminal. The interrogator is asked to distinguish the computer from the
human being solely on the basis of their answers to questions asked over this
device. Note that although the Turing test has been a well-known concept, it is
not without controversies. A rich literature exists on the topic of measuring
intelligence. However, in this book we will not get into more detail about this
debate.

2.4 BASIC ASSUMPTIONS OF COMPUTATIONAL
INTELLIGENCE

Computational intelligence is considered as an empirical inquiry due to its
exploratory nature. The complex tasks involved in computational intelligence
require us to make reasonable assumptions, and carry out research based on
these assumptions. We should notice that different assumptions have been
made due to concerns from various perspectives (such as philosophy,
psychology, as well as others). Debates have been carried out around these
assumptions. In the following, we briefly examine some important
assumptions used in computational intelligence (but we will not get involved
into these debates).

2.4.1 SYMBOLISM

2.4.1.1 Physical symbolism and representation
This assumption states that intelligent actions are demonstrated based on

physical symbols. A symbol is just a token to denote a thing which has a well-
defined meaning. For example, "student" is a symbol denoting a concrete
thing (an object), "thought" is a simple denoting an abstract object, and "take"
is also a symbol denoting an activity. Symbolism serves as the foundation for
state space search and knowledge representation, two of the most fundamental
issues discussed in artificial intelligence literature.

2.4.1.2 Physically grounded
The physical-ground hypothesis assumes that in order to build a system

that is intelligent, it is necessary to have representations grounded in the
physical world. This assumption challenges the physical-symbol system
hypothesis in computational intelligence. The hope is that the physical-ground
hypothesis obviates the need for symbolic representations or models because
the world becomes its own best model. This assumption has been adopted by
some researchers in computational intelligence, but is not widely accepted.
We will not pursue this direction further.

2.4.1.3 Subsymbolism
The basic feature of subsymbolism is to de-emphasize the use of symbols to

denote objects and relations; intelligence is viewed as arising from the
collective behavior of large numbers of simple, interacting components. A
well-known example of subsymbolism is neural networks (NNs). Unlike
symbol-based computational intelligence, a neural network system assumes no
correspondence between the units of computation and objects or relations in
the world. There is a distributed representation: represent knowledge
implicitly in patterns of interactions between components (weights). For this
reason, the term connectionism has been used to describe neural networks. In
this book, although we do not locate any chapter or section to discuss neural
networks, from time to time we will compare this approach with other
approaches.

Figure 2.7 A simple neural network

2.4.1.4 Other approaches
Other approaches also exist. For example, Copycat's architecture is claimed

as neither symbolic nor connectionist, nor as a hybrid of these two (although it
can be thought as this way). [Hofstadter 1995] argued that the program has a
novel type of architecture somewhere in between these extremes. It is an
emergent architecture, in the sense that the program's top-level behavior
emerges as a statistical consequence of myriad small computational actions,
and concepts in creating analogies can be considered to by realization of
"statistically emergent active symbols." Since approaches like this are not
popular, we will not pursue this direction further.

2.4.2 SEQUENTIAL OR PARALLEL

The concept of artificial neural network goes beyond subsymbolism. In
fact, the distributed nature of neural network (as discussed above) makes it a
perfect example of massive parallel processing. Each artificial neuron can be

 Output unites,
 Intepreted as classifications
 House Plant
 ❍ ❍ ❍ ❍
 wn

Adjustable weights wm

 ❍ ❍ ❍ ❍ ❍ ❍
 Hidden layer wk

 ❍ ❍ ❍ ❍
Input units wj

 wi

 (Image)

considered as an extremely simple processing element, and these processing
elements can process information in parallel. In this sense, neural networks are
at odds with sequential models as exemplified by Newell's "Unified theories
of cognition"[Newell 1990].

The UTC presents a cognitive architecture rooted in conceptually serial
register-transfer level of computer architecture (so little adapted to the needs
of cognitive neuroscience). Newell emphasizes a serial symbol-computation
perspective throughout. Most parts of this book will follow this tradition.

2.4.3 LOGIC-BASED APPROACH

An influential viewpoint in traditional computational intelligence
community is that computational intelligence urgently needs mathematical
and logical theory. As a founder of computational intelligence, John
McCarthy [Lifschitz 1991] argued that we will not reach human level
intelligence by more algorithms reducing the complexity of a problem from n2

to n log n. The more common sense we formalize, the more we will need to
develop logic, exactly as has happened for physics and mathematics.
However, the choice of a logic-based approach to computational intelligence
has been very controversial. The main problem is that logic has been
developed with goals quite different from computational intelligence, e.g., to
prove the consistency of mathematical reasoning, or to provide semantics to
(parts of) natural language. Although logic is a very good starting point which
allows formalizing many forms of common sense, it is far from having the
expressibility needed to represent basic notations in computational
intelligence. Nevertheless, a logic-based approach provides a standard for
studying various useful forms of reasoning. For example, production systems
model (to be discussed in Chapter 5) can be considered as a "loose" form of
logic, and conceptual graphs (Chapter 6) can be converted into logic by
following certain steps. In addition, conceptual and logical data modeling can
also benefit from logic (Chapters 4 and 6). Therefore, logic can be considered
as the starting point of an integrated approach for decision making, and will be
discussed in the next chapter.

2.4.4 HUMAN INTELLIGENCE AS METAPHOR

Computational intelligence is exploratory in nature and is thus an empirical
science [Simon 1995]. Since the natural intelligence (particularly, human
intelligence) is the only model we are familiar with, it is natural to use human
intelligence as the model to develop computational intelligence systems.
However, this does not mean computational intelligence must follow the exact
ways human beings approach reasoning.

In addition, there may be many different ways to use human intelligence as
a metaphor. In fact, symbolism and subsymbolism can be considered as two
different ways of modeling intelligence -- at the cognition level or at the brain
level. We should note, however, using human intelligence as a metaphor is not
the only option. In fact, recent studies in artificial life (AL) and adaptive

behavior have tried to re-situate computational intelligence-related research
within the context of an artificial biology and zoology, respectively. The
bottom line of these directions is that we need much more understanding of
the animal substrates of human behavior before we can fulfil the dreams of
computational intelligence [Humphrys 1999].

2.4.5 SUMMARY

In summary, the assumptions used by "mainstream" computational
intelligence can be illustrated through Newell's United Theories of Cognition
(UTC) framework [Newell 1990], which has three principal themes:

(1) Psychology has arrived at the possibility of unified theories of
cognition;
(2) There is a common foundation underlying cognitive science;
(3) A n ar ch itectu re called S o ar d ev elo ped b y New ell and h is research
group is a candidate unified theory of cognition that is useful as an
exemplar of the concepts.

Fundamental knowledge system functions of UTC include the following:
• symbol (as already discussed);
• representation: symbol structures act as representations as they obey.

Newell's basic representation law can be expressed as
Decode [Encode[T](Encode[S])] = T(S),

where T stands for transformation while S stands for situation. So this formula
says that transforming a situation is done by encoding both the transformation
and situation and then decode them.

In the remaining part of this chapter, we will examine the two most
important issues of computational intelligence under the UTC framework,
namely, search and representation.

2.5 BASIC STORAGE AND SEARCH STRUCTURES

2.5.1 ABSTRACT DATA TYPES AND DATA STRUCTURES

The remaining part of this chapter is devoted to basics of search. We start
with an informal review for some important abstract data types. The purpose
of this review is to make our discussion somewhat self-contained. Abstract
data types (ADTs) are conceptual description of data elements, including a set
of operations. For example, the ADT stack has a "last-in-first-out" feature, and
is characterized by operations such as push and pop. An ADT can be
considered as a primitive form of the concept "object" (in the context of
object-oriented paradigm). The implemented form of ADTs is usually referred
to as data structures. For example, stacks can be implemented using arrays or
linked lists. Examples of using these data structures can be found later in this
chapter.

2.5.2 LINEAR STRUCTURES: LISTS, STACKS, QUEUES AND
PRIORITY QUEUES

In linear data structures, a strict order is defined for all elements: one
element is followed by another (except for the first and the last elements). The
most popular linear structure is a list. Two restricted formats of linear
structures are stacks (featured by last-in-first-out) and queues (featured by
first-in-first-out). Although linear structures are simple, they are useful in
modeling real-world problems. For example, the rate at which fund managers
buy and sell stocks -- known as the turnover rate -- can be high, generating
substantial capital gains and taxes. To combat this, tax-managed mutual funds
often employ the old "buy and hold" strategy, lowering the number of
transactions until a later date. Under most circumstances, a fund manager will
sell the earliest-bought shares of a stock first, since they probably had the
lowest purchase price and will bring the greatest profit. This is generally
known on Wall Street as "first in, first out." However, managers of tax-
managed funds do something more like "last in, first out." They're often
careful to trade shares they purchased more recently, which will tend to sell
for less capital gains.

A special kind of queue is called priority queue, where the order is not
determined by time of each element entering the queue, but rather, by the
priority associated with each element. The use of a priority queue will be
illustrated in solving the 8-puzzle problem (Section 2.8.2).

2.5.3 TREES

A tree can be considered as a generalization of a list. A list is like a chain,
while a tree allows branches. In fact, a tree is a hierarchical structure
consisting of nodes (where data are stored) connected by edges. There is a
designated node called the root of the tree. It would be beneficial if we view a
tree as a root connected to several subtrees (each subtree is itself a tree). This
perspective allows us to define a tree recursively. Of all kinds of trees, binary
trees are of particular interest, where at most two subtrees (left subtree and
right subtree) are allowed for each node. The nodes in a binary tree can be
visited using various ways, including preorder (the root of a tree is visited
first, followed by left and right subtrees), inorder (the root of a tree is visited
after left subtree but before the right subtree) and postorder (the root of a tree
is visited after left and right subtrees). There is also a lever-order traversal,
where the nodes can be reached from the root (called the children of the root)
are visited after the root itself. The children of these nodes are then visited in
turn. Tree structures used for storage and search purpose are called search
trees. In reality, binary search trees are a popular search structure. A binary
search tree has an order property: for any node, keys stored in the left subtree
are smaller than the key stored in the node itself and the keys stored the right
subtree are larger than the key stored in the node itself (note that the term key
refers to search key which is a variable whose value is used to guide the
search). Another useful tree structure is heap. A binary heap is a binary tree

which has a balanced structure and has a heap order property: the key of the
parent is always smaller than its children. There is an interesting relationship
between a priority queue (which is usually conceived as a linear structure) and
a heap (which is a tree). This is because in a priority queue, so long as we can
always easily find the element with the highest priority, we do not have to
worry about the exact order of other elements. This way of thinking leads to
the heap implementation of the priority queue [Weiss 1998].

2.5.4 INDEX STRUCTURES FOR DATA ACCESS

For huge amounts of data, data structures for external storage are needed so
that we can efficiently access data stored in secondary memory. A database
stores structured data (usually in secondary memory) such as student
information records, course information records, as well as others. Indexing
techniques are needed to assist the search of the data. There are two basic
kinds of indices: Ordered indices (based on a sorted ordering of the values)
and hash indices (based on the values being distributed uniformly across a
range of buckets. The bucket to which a value is assigned is determined by a
hash function, which is a content-to-address mapping.) Extendible hashing is
a technique used to guarantee a find operation is performed in two disk
accesses for database input/output processing. A useful index structure is B
tree, which has many variations [Weiss 1998, Silberschatz, Korth and
Sudarshan 1998].

2.5.5 DISCRIMINATION TREES FOR INFORMATION RETRIEVAL

Search structures would become much more complex if what to be accessed
is not structured data. Accessing such kind of data is studied in the field of
information retrieval (IR). A discrimination tree (or network) is a data
structure used for storing and retrieving large numbers of symbolic objects.
The basic idea behind discrimination networks is to recursively partition a set
of objects. Each partition divides the set of objects into subsets based on some
simple rule. In a problem solving approach called case-based reasoning
[Kolodner 1993], previously acquired cases are stored in a discrimination
network for convenience of later retrieval.

2.5.6 GRAPHS

A graph G = (V, E) consists of a set of vertices (or nodes), V, and a set of
edges (or arcs), E. Each edge is a pair (v, w), where v, w ∈V. Various graph
search algorithms have been developed. A path through a graph connects a
sequence of nodes through successive arcs. Graphs serve as a useful vehicle to
model many real-world problems. State space search (to be discussed later in
this chapter) can usually be conducted through graph search algorithms, where
the states form the vertices of a graph. Among the most fundamental graph
search algorithms are depth-first and breadth-first search, which will be briefly
reviewed in Section 2.8. The graph is a very general concept and many other
data structures can be considered as special cases of a graph. For example, a

tree can be viewed as a graph in which two nodes have at most one path
between them. A network can also be considered as a graph. Graphs play an
important role in computational intelligence problem solving. Various
problem solving constructs to be introduced in the next few chapters are all
variations of graphs, such as entity-relationship diagrams for conceptual data
modeling (Chapter 6), conceptual graphs and frame systems for knowledge
representation (Chapter 6), as well as others.

2.5.7 REMARKS ON SEARCH OPERATION
One of the very important operations in many data structures is search,

which is the operation of looking for a specific item in a data structure. It is
interesting to note that relationship between search operation and operations
under other names. For example, a "find" operation frequently means
searching the data structure. Retrieval of information usually involves search,
but may also involve some additional operations (for example, perform
reasoning based on the result of search). Searching a tree or a graph may
require visiting all the elements in that data structure (if the target of search is
not there), in this case the search operation actually has the same effect of the
traversal operation. For example, the depth first search (DFS) algorithm in
graphs is an extension of the preorder traversal in trees. It can be considered as
an extension of pre-order traversal for (ordered) trees. The search follows a
particular direction (usually the leftmost), going as far as possible, until a dead
end is reached. A backtrack then occurs and search continues in the same
fashion until all the vertices have been visited. Breadth first search (BFS) in a
graph can be considered as an extension of level order traversal for the trees.
One thing we should keep in mind about graph search algorithms is that we
should avoid visiting the same node more than once.

2.6 PROBLEM SOLVING USING SEARCH

In the previous section we discussed storage and search structures. In this
section we further discuss issues related to using these structures for problem
solving.

2.6.1 MEANINGS OF SEARCH

In order to understand the role of search in problem solving, let us briefly
discuss the different meanings of search based on a comments given by
[Mitchell 1998]. Search is not necessarily restricted to physical symbolism,
although physical symbolism has some impact on the form of search. It has
been noted that there are at least three (somewhat overlapping) meanings of
search:
• Search for stored data: For example, we can use binary search in a binary

search tree as outlined in Section 2.5.3.

• Search for paths to goals: These are typical graph search algorithms. The
problem is to efficiently find a set of actions that move from a given
initial state to a given goal. This is central to symbol-based computational
intelligence. Search algorithms to be described later in this chapter belong
to this category.

• Search for solutions: It is a more general class of search. The idea is to
efficiently find a solution to a problem in a large space of candidate
solutions. The rationale to study this kind of search is that graph search as
discussed in (b) does not always apply and not all problems require
finding a path from initial state to a goal. An example would be the task
of determining protein structure. Genetic algorithms belong to this
category (as to be briefly discussed in Chapter 16). It subsumes (b),
because a path through a search tree can be encoded as a candidate
solution.

• Extended meaning of search: The discussion given above has been mainly
from the traditional computational intelligence perspective. The topic to
be examined in this book, namely, computational intelligence for decision
support, has widened the contents covered by the notion of search. In fact,
various kinds of retrieval (as to be discussed in Chapter 5) can be
considered as generalized search. The notion of viewing reasoning as
extended retrieval has further extended the notion of search, and will be
discussed in Chapter 7.

In this chapter, we mainly focus on state space search for symbolic
reasoning. Nevertheless, we will take a brief look at other search mechanisms,
because management of data should be integrated into the process of
management of knowledge.

2.6.2 STATE SPACE SEARCH

We can now take a brief look at an important notion in symbol-based
computational intelligence: state space search. A good understanding of tree
traversals can help us understand graph search algorithms. Graph search
algorithms are particularly important for state space search, because a state
space can be viewed as a graph and a state in the state space can be viewed as
a vertex in the graph. However, unlike the graph search where the graph is
presented in a static fashion, the states and their connections considered in a
state space search are usually constructed in a dynamic manner on a need
base. This is to prevent the huge number of states to be presented.
Nevertheless, the actual search process remains the same. Various search
algorithms have been developed. In Section 2.8 we will review blind search
algorithms, and study heuristic search algorithms. Search can also be carried
out along different directions, such as data-driven and goal-driven search (to
be studied in Chapter 4).

2.6.3 REMARKS ON SCALING UP

The huge number of states involved in state space search posed a severe
restriction on the application of search methods in real-world problem solving.
Use of heuristics and knowledge-intensive approaches may reduce the
difficulties. Nevertheless, manipulating huge amount of data that mainly
reside in the secondary memory and manipulating knowledge in the main
memory still pose a big challenge for the integrated use of data and
knowledge-based systems. Various issues related to this synergy (many of
them beyond the search task proper) will be addressed in this book. An
interesting example is the relationship between machine learning (conducted
in computational intelligence community) and data mining (largely originated
from business analysis of huge amount of data), as to be discussed in Chapter
10.

S e ar ch is t h e co m m o n u n d er ly in g f u n cti o n o f d at ab a s e m an a g e m en t
systems and knowledge-based systems (both kinds of systems will be further
discussed in Chapter 4 and Chapter 5). The inappropriate combination of two
powerful search mechanisms can lead to a multiplicative explosion in
computation time. Performance is thus a key challenge in the development of
integrated systems which involving manipulation of both data and knowledge.

2.7 REPRESENTING KNOWLEDGE FOR SEARCH

In the last two sections we discussed general issues related to search. In
order to use search to solve problems in computational intelligence, however,
usually we should first represent the knowledge in an appropriate manner so
that search process can be conducted on the represented knowledge. In this
section, we give a brief preview on the issue of knowledge representation.
More detailed discussions on knowledge representation will be provided in
Chapter 3 (where we discuss predicate logic), Chapter 5 (where we discuss
production rules) and Chapter 6 (where we discuss structured representations).

2.7.1 LEVELS OF ABSTRACTION IN COMPUTATIONAL
INTELLIGENCE PROBLEM SOLVING

Let us first take a look at levels of abstraction involved in building
computerized systems for problem solving as shown in Figure 2.8.

Knowledge level
Symbol level

Algorithm and data structure level
Programming language level
Computer architecture and

operating system levels
Figure 2.8 Hierarchy of abstraction in computer problem solving

We examine these levels first from a bottom-up manner:

• Computing architecture and operating system levels: These are most
fundamental levels considered within a computing system.

• Programming language level: At this level, computer programs will
be written in specific programming languages and executed by
underlying operating systems.

• Algorithm and data structure level: Algorithms developed for
problem solving applications should be described in terms of abstract
data types (ADT) and further implemented using various data
structures. These computer programs are then handled at the
programming language level.

Computational intelligence problem solving is concerned with application
programs carried out on the algorithm and data structure level. In particular,
when symbolic reasoning is used, we can distinguish the following levels:

• Subsymbolic level: Although this level is not included in Figure 2.8,
as discussed in Chapter 1, problems can be solved at a level below
symbolic reasoning (for example, using neural networks).

• Symbol level (and other forms of information levels): The symbol
level is concerned with the particular knowledge representation (KR)
formalisms used to represent problem-solving knowledge; for
example, using predicate logic, production rules, or frames. In
symbolic computational intelligence, states in the state space search
are formed using various KR formalisms. For example, when
predicate logic is used, a state could be formed by a predicate
statement (see Chapter 3 for more detail).

• Knowledge level: The knowledge level defines the capabilities of an
intelligent system. It refers to the knowledge content that is
independent of the formalisms used to represent it (so long as the
representation language is sufficiently expressive). The process of
capturing knowledge at the knowledge level is referred to as
knowledge modeling. The separation of knowledge level and symbol
level resembles the concept of abstract data type (ADT) and its actual
implementation using various data structures. The separation of
knowledge level and symbol level is also echoed in the separation of
knowledge base and its control structure, as can be found in expert
systems (see Chapter 5). A direct application of knowledge level is
knowledge modeling (to be discussed in Chapter 6).

2.7.2 USING ABSTRACT LEVELS

We now examine these abstract levels in a top-down manner. The
hierarchical structure indicates that we should start from the most abstract
level (i.e., the knowledge level). In order to support this kind of problem
solving, a wide range of languages for knowledge representation (KR) should
be developed at the symbol level. Note that these languages are not just used
for representing knowledge, but more importantly, are based on the
representation to perform reasoning (which involves searching in the state

space). Therefore, the term knowledge representation (KR) actually refers to
knowledge representation and reasoning (KR&R). These languages are
usually referred to as knowledge representation schemes. Note also that it is
possible for us to discuss the relationship between these schemes as well as
the mapping between them. Knowledge representation and related search
process form the core of symbol-based computational intelligence. Various
KRR schemes will be discussed in Chapter 3 and Chapter 6. The represented
knowledge and its reasoning is implemented through an appropriate
programming language, as to be discussed next.

2.7.3 PROGRAMMING LANGUAGES FOR COMPUTATIONAL
INTELLIGENCE

2.7.3.1 Desirable features of programming languages for symbolic
reasoning

There are many desirable features for languages used in symbolic reasoning
[Luger and Stubblefield 1998]. Among them are the following:
• support of symbolic computation;
• flexibility of control, because it is difficult to imagine that intelligence

could be achieved through the step-by-step execution of fixed instruction
sequences exhibited by traditional computer programs;

• support of exploratory programming methodologies (computational
intelligence programming is inherently exploratory);

• and others.

2.7.3.2 Remarks on LISP, and Prolog and C++
Two important languages for computational intelligence programming are

LISP and Prolog. Like most traditional programming languages, LISP is
procedural, because it specifies how to perform the algorithm. The syntactic
elements of the LISP programming language are symbolic expressions (or s-
expressions for short). An s-expression could be an atom or a list (which is a
sequence of either atoms or other lists separated by blanks and enclosed in
parentheses). An important feature of LISP is that both programs and data are
represented as s-expressions. The power of LISP is based on the use of lists to
construct arbitrarily complex data structures of symbolic and numeric atoms,
along with the forms (i.e., LISP expressions that may be meaningfully
evaluated) needed for manipulating them. Lists in LISP are recursive
structures. In contrast, Prolog can be considered as an implementation of logic
as a programming language. Prolog programs have a declarative reading as
well as a procedural reading. Later we will summarize some most important
aspects of Prolog, which are related to computational intelligence (rather than
all features of being a programming language).

Object-oriented programming provides an excellent structure for solving
computational intelligence problems. Through the use of classes
computational intelligence programs can be written around the data types to
the problem. However, we should keep in mind that C++ is not as directly

suited to symbolic computation as other programming languages, such as
LISP or Prolog. Nevertheless, class libraries that simulate Prolog can quickly
be built. A strong motivation for using C++ for computational intelligence
programs is its suitability for use in large software systems [Tracy, and
Bourthoorn 1996].

2.8 STATE SPACE SEARCH

We are now ready to discuss basics of state space search. A node in a graph
denotes a state in a search process. Usually a path consisting of the nodes
which are used as intermediate steps to reach this goal (called the solution
path) is returned along with the goal state. We start with uniformed search.

2.8.1 UNINFORMED SEARCH (BLIND SEARCH)

2.8.1.1 Depth-first search
A well-known method for graph search is depth-first search (DFS). When

this method is used, we start with any node. We keep on visiting the
descendents of a node until a dead end is reached. In case a node has more
than one child, the convention is to visit the left-most unvisited child first. In
case a dead end is encountered, we backtrack to the parent of that node. In
order to remember the nodes visited, we use a stack data structure: when we
visit the descendents of a node, descendents are pushed onto the stack. After
descendent nodes are visited, they are popped out from the stack. Search is
continued in this manner until all the nodes in the graph are visited. As an
example, consider the graph in Figure 2.9(a). Suppose we start from node A.
The order of DFS traversal is indicated as 1, 2, …9 indicated in Figure 2.9 (b).

Figure 2.9 (a) A graph

Figure 2.9 (b) An example of depth first search

 A(1)

 B(2) C(8)

 D(3) E(4) F(5) G(9)

 H(6) I(7)

 A

 B C

 D F G
 E I
 H

2.8.1.2 Breadth-first search
An alternative method is breadth-first search (BFS), where the children of

the visited node will be visited, then the children's children will be visited.
Search is continued in this manner, until all the nodes are visited. In order to
remember the order of children to be visited, a queue structure is used. BFS
for graphs can be considered as an extension of level-order traversal for trees.
For example, when BFS is applied to the example in Figure 2.9 (a), we will
have the following as the result: A, B, C, D, E, F, G, H, I.

2.8.1.3 Iterative deepening search
Comparing BFS with DFS, we note that a drawback of DFS is that it may

fail to find a specified node (the goal). This case could happen, for example,
when we are visiting a subtree whose depth is infinitive; in this case, we may
never be able to get a chance to visit the goal node. BFS does not have this
problem. In addition, in case there is more than one way to find the goal, BFS
guarantees the shortest path will be returned. Better search methods should be
developed. In the following, we briefly discuss an improvement of DFS,
called iterative deepening depth first search (IDDFS), and use an example to
illustrate the basic idea.

Skeleton of the IDDFS:

search the tree using DFS as the tree had only one level;
repeat
 if not found, try one more level
 (revisit all the nodes visited in the previous round);
until found or there is no way to continue.

Note that in IDDFS, most work is done at the last round, but we need to
perform most of the work in search anyway. (If we can find the goal earlier,
we are lucky.) The idea is to perform recomputation rather than storing the
previous result. Each recomputation is a depth-first search which will use less
space. Since the number of nodes in a given level of the tree grows
exponentially with depth, almost all the time is spent in the deepest level, even
though shallower levels are generated an arithmetically increasing number of
times.

As a simple example, let us take a look at the tree in Figure 2.10(a). Figure
2.10 (b) depicts the numbers denote the order of visit; they are not the data
elements (which are not shown).

Figure 2.10(a) A tree

Figure 2.10 (b) Order of visit

2.8.1.4 Comparison of uninformed search algorithms
We now give a brief comparison for the uninformed search algorithms

discussed. We use the following notations: b is the branching factor; d is the
depth of solution; and m is the maximum depth of the search tree. (Note:
usually d < m.) In addition to time and space complexity, we also use the
following evaluation criteria:
• Completeness: Is the strategy guaranteed to find a solution when there is

one?
• Optimality: Does the strategy find the highest-quality solution when there

are several different solutions?
The result of comparison is shown in Table 2.1. Comparing BFS versus

DFS, DFS is more space efficient while BFS is guaranteed to get the optimal
solution and is complete. The table also clearly indicates that IDDFS
combines the merit of both BFS and DFS.

Table 2.1 Comparison of uninformed search algorithms
Criterion BFS DFS IDDFS
Time
Space
Complete?
Optimal?

bd

bd

Y
Y

bm

bm
N
N

bd

bd
Y
Y

1, 2, 5, 12

 3,6,13 4,10,19

 7,14 8,15 9,16 11,20

 17 18

 A

 B C

 D E F G

 H I

2.8.2 HEURISTIC SEARCH

The search methods discussed so far all perform blind search, because none
of these methods would evaluate the "goodness" of a state to be explored. In
order to make search more effective and more efficient, it would be beneficial
to develop some criteria to evaluate the "goodness" of each state. This is
where heuristic search comes from. In the following, we first provide a
discussion on heuristics, then we will discuss search methods using heuristics.

2.8.2.1 Heuristics
A heuristic is a rule of thumb which can be used to help us to solve the

problem. For example, if you are looking for your friend, and if you see his
car in front of the library, you may expect to find him in the library. However,
heuristics are fallible, because they do not guarantee a solution (or a good
solution) will be found. In our current example, the heuristic rule you used ("if
somebody's car is there, then that person must be close by") is fallible because
you do not know your friend's car is broken, and his roommate has given him
a ride home. Nevertheless, in many situations, heuristics are useful.

Heuristics have been extensively studied by computational intelligence
researchers. As for the nature of heuristics, Lenat (based on his AM and
EURISKO programs) claimed that " (h)euristics are compiled hindsight, and
draw their power from the various kinds of regularity and continuity in the
world; they arise through specialization, generalization, and--surprisingly
often--analogy" [Lenat 1982]. Some other researchers noted that "(t)he history
of artificial intelligence shows us that heuristics are difficult to delineate in a
clear-cut manner and that the convergence of ideas about their nature is very
slow" [Groner, Groner and Bischof 1983]. A comprehensive discussion on
heuristics in computational intelligence can be found in [Pearl 1984].
Heuristics have also been studied in knowledge-based systems, particularly in
knowledge acquisition.

It is important to understand what heuristics are: they are rules of thumb
(rather than mandatory rules) because although they are useful, they are also
fallible. Heuristics are useful in problem solving and can be incorporated into
algorithms. However, heuristics themselves are not algorithms nor solutions.
Rather, they serve as a smart guide for problem solving. There are pros and
cons of using heuristics: they can help to identify better (more promising)
states and find shorter paths (optimal or suboptimal solutions). However, we
should also remember that heuristics themselves become a kind of overhead
and there is a need to limit the amount of time spent computing the heuristic
values used in selecting a node for expansion. For example, many mutual
funds allow investors to purchase shares through automatic investment plans,
with the advantage to the investor of dollar cost averaging. Many of the funds
also allow investors to pick a specific date in the month for money transfer
from the bank. So how to select the best date for largest gain? The heuristic is
"buying on the next-to-last market day of the month." The reason is that the
market generally performs better-than-average late in the month and early in

33

the month, so this timing puts your money into funds just before the bullish
period (Mutual Fund Magazine, May 1999, p. 33). Note heuristics need to be
measured to reflect their effect. In this mutual fund example, the heuristics
used can be measured by its impact on the rate of return.

As a more concrete example, we can talk about heuristic functions for the
8-puzzle problem. One heuristic is tiles out of place. We can simply count
how many tiles are out of place when it is compared with the goal and take the
sum. In Figure 2.11(a), such tile is marked by an asterisk (*). The total
number of tiles out of place is 5. Do this to all states that need to be evaluated.
The state with the smallest sum will be selected.

 State to be evaluated: Goal state:

2 * 8 * 3 1 2 3

1 * 6* 4 8 4

 0 7 5 7 6 5

Figure 2.11 (a) An example

Another heuristic is sum of distances out of place: Unlike the previous
heuristic which only considers how many tiles are out of places, we now count
how far away for each tile. For example, in the state shown in the left of
Figure 2.11 (b), the tile numbered 8 need at least two steps to get to the
position it should be. Note that in reality, to make 8 to arrive at its destination
may require mor e step s than 2 steps. As we will soo n see, this is a v ery im portan t
property of heuristics. The least number of steps needed to reach the goal
position is shown in parentheses in corresponding cells. The sum of all tiles is
1 (for tile 2) + 2 (for tile 8) + 1 (for tile 1) + 1 (for tile 6) + 1 (for tile 7) = 5.
This sum is then compared with all the other sums of competing states.

2 (1) 8 (2) 3 (0) 1 2 3
1 (1) 6 (1) 4 (0) 8 4
 0 7 (1) 5 (0) 7 6 5

Figure 2.11 (b)

2.8.2.2 Best first search
As an example of best first search, let us consider hill climbing. It is a

heuristic problem-solving method that works by choosing a value for each
variable and iteratively improving its assignment. It requires a heuristic value
for each total assignment. Hill climbing can be viewed as a graph-searching
procedure where a node in a graph corresponds to an assignment of a value to
each var iable as a n od e. Th e n eigh bo r s of a no de co rr esp on ds to an assignment
of a value to each variable as a node. The neighbors of a node correspond to
the assignments that are close to the assignment represented by the node.
Initially a single node is selected to start. Maintaining a single node at each

state, the algorithm selects the neighbor of the node with the highest heuristic
value, and use that as the next node to search from. The algorithm stops when
no neighbor has a higher value than the current node. A general description of
the best first search algorithm is shown below.

Best first search algorithm

open = [start];
closed = [];
while open <> []
 {remove the state with the highest priority, denote it as d;
 if d = goal then return the path from start to d;
 else
 {generate children of d;
 for each child of d do
 {if the child is not found in open or closed
 {assign the child a heuristic value;
 add the child to open};
 if the child is found in open
 {if the child was reached by a shorter path this time
 re-assign the child a heuristic value using shorter path}
 if the child is found in closed
 {if the child was reached by a shorter path this time
 remove the state from closed;
 add the child to open}
 move the state to closed;
 determine the state with the highest priority to be examined next;}
 return failure (open is empty)}

A specific version of this algorithm is generally referred to the A* algorithm
(pronounced as A-Star algorithm). This algorithm requires the evaluation
function must take a specific form. The A* algorithm is listed below.

A* algorithm
__
 In best first search algorithm with evaluation function
 f(n) = g(n) + h(n)
 where

n is any state encountered in the search,
g(n) is the cost of n from the start state,
h(n) is the heuristic estimate of the cost of going from n to a goal and
 h(n) is less than or equal to the cost of the minimal path from n
to the goal.

To implement the A* algorithm, it is convenient to use two data structures
to keep on tracing the states which have already have generated children, and
the states to be examined. The former is termed as CLOSED and can be held
in a stack, while the latter is termed as OPEN and can be treated as a priority
queue (ordered according to estimation function values), and can be
implemented as a minimum heap [Weiss 1998]. Note also in a minimum heap,
although we can always find the minimum element (namely, the state with
highest priority) efficiently, a sorted order does not exist. Nevertheless, for
convenience of discussion, in the following, we treat the priority queue as a
fully sorted list.

We use the 8-puzzle problem to illustrate how this algorithm works. For
simplicity, we use the tile-out-of-place heuristic. The problem-solving process
using A* algorithm is shown in Figure 2.12.

 Initial: (a) g(n)=0
2 8 3 h(a)=4
1 4 f(a)=4
7 6 5

(b) (c) (d) (e)

2 8 3 2 3 2 8 3 2 8 3
1 4 1 8 4 1 4 1 6 4

7 6 5 7 6 5 7 6 5 7 5
h(b)=3 h(c)=3 h(d)=4 h(e)=4 g(n)=1
f(b)=4 f(c)=4 f(d)=5 f(e)=5
(f) (g) (h) (i)

8 3 2 8 3 2 3 2 3
2 1 4 7 1 4 1 8 4 1 8 4
7 6 5 6 5 7 6 5 7 6 5
h(f)= 3
f(f) = 5

h(g)=4
f(g)=6

h(h)=2
f(h)=4

h(i)=4 g(n)=2
f(i)=6

(j)

1 2 3 h(j)=1
8 4 f(j)=4

7 6 5
 g(n)=3

 (k) (l)

1 2 3 1 2 3
8 4 7 8 4
7 6 5 6 5
h(k)=0 GOAL! h(l)=2 g(n)=4
f(k)=4 f(l)=6

Figure 2.12 An example of A* algorithm

The elements in the Open and Closed lists are listed below, where each
state is denoted by the name of the state attached by the f function value. (For

a more detailed discussion of this example, see [Luger and Stubblefield,
1998]).

Open = [a4] Closed = []
Open = [b4, c4, d5, e5] Closed = [a4]
Open = [c4, d5, f5, e5, g6] Closed = [b4, a4]
Open = [h4, d5, f5, e5, g6, i6] Closed = [c4, b4, a4]
Open = [j4, d5, f5, e5, g6, i6] Closed = [h4, c4, b4, a4]
Open = [k4, d5, f5, e5, g6, i6, l6] Closed = [j4, h4, c4, b4, a4]

Success (k is the goal state).
Earlier in Section 2.6.1 we discussed several different meanings of search.

Apparently our current problem is to efficiently find a set of actions that move
from a given initial state to a given goal. The involved actions form a solution
path. The solution path consists of states needed to reach the goal from the
initial state. One way to maintain such information is to attach additional
information of parent-child relationship for all states visited. In our example,
the solution path consists of the following states:

a → c → h → j → k.

In general, a solution path is a chain of states (s1, s2, … sn), with s1 as the
initial state, sn as the goal state, and sj-1 is a parent of sj, for j ≥ 2.

Some important definitions are now in order. Heuristics that find the
shortest path to a goal whenever it exists are said to be admissible. An
admissible heuristic express an optimistic estimation which never
overestimates. In the 8-puzzle example, counting tiles out of place is
apparently an optimistic heuristic, because if a tile is two positions away from
the final position, usually it takes more than two steps to actually to arrive at
that position. In addition to admissibility, we can also discuss the
informedness of a heuristic (concerned with determining which heuristic is
more informed than another) and monotonicity (which is concerned with
consistently finding the minimal path to each state they encounter in the
search).

We can further extend the definition of admissibility from heuristics to
algorithms. A search algorithm is admissible if, for any graph, it always
terminates in the optimal solution path whenever a path from the initial to goal
state exists. In general, we have the following important result: All A*
algorithms are admissible.

2.9 REMARK ON CONSTRAINT-BASED SEARCH

As a special remark on the general notion of search, we give the following
comment. Many problems in computational intelligence are concerned with
constraints. For example, the well-known Waltz labeling algorithm applied the
idea of constraint propagation to identify a three-dimensional object from a
two-dimensional figure (for a brief discussion of this algorithm, see [Rich and
Knight 1991]). More generally, in constraint satisfaction problems (CSPs),

we are given a set of variables, a domain for each variable, and a set of
constraints or an evaluation function. These problems involve choosing a
value for each variable so that the total assignment satisfies the constraints or
optimizes the evaluation function. The multidimensional aspect of these
problems, where each variable can be seen as a separate dimension, makes
them difficult but also provide structure that can be exploited.

CSPs can be divided into two main classes:
• Satisfiability problems: the goal is to find an assignment of values to

variables that satisfies some constraints. These constraints are hard
constraints because they have to be met.

• Optimization problems: each assignment of a value to each variable has a
cost or an objective value associated with it; the goal is to find an
assignment with the least objective value. The constraints are specified
preferences and are referred to as soft constraints.

CSPs can be considered as graph-searching problems in at least two ways.
One way can be summarized as follows. A node corresponds to an assignment
of a value to all of the variables, and the neighbors of a node correspond to
changing one variable value to a local value. These problems differ from the
conventional graph-searching problems in that we are not interested in the
path, there is no starting node, and one can easily generate an arbitrary node
(by choosing an assignment of values to variables), so that any node can be
used as a starting point [Poole, Mackworth and Goebel, 1998]. Hill climbing
(as briefly discussed in the Section 2.8) can be considered an example of
constraint-based reasoning.

2.10 PLANNING AND MACHINE LEARNING AS
SEARCH

The concept of search is pervasive in computational intelligence problem
solving. To illustrate this, we briefly examine two areas of computational
intelligence from the perspective of problem solving as search.

2.10.1 PLANNING AS SEARCH

Intuitively, a plan is a strategy for acting. Planning involves choosing a plan
by considering alternative plans and reasoning about their consequences. A
planner is a problem solver that can produce plans (which are sequences of
actions) to achieve some goal. Planning is an important form of decision
making. A typical example used to illustrate the key ideas of planning is the
block world. Figure 2.13 depicts a simple task of planning. The mandatory
rules used in a block world usually follow the operations of stacks. In the
initial state of Figure 2.13, we have two stacks of blocks, and we want to put
C on the top of E.

At the most abstract level, the task of planning is the same as problem
solving. Planning can be viewed as a type of problem solving in which the

agent uses beliefs about actions and their consequences to search for a
solution over the most abstract space of plans, rather than over the space of
situations. Planning algorithms can also be viewed as special-purpose theorem
provers that reason efficiently with axioms describing actions [Russell and
Norvig 1995].

Figure 2.13 An example of planning

In a planner, operators correspond to actions that transform one state into
another. As an alternative formulation of planning as search, we might use a
search space consisting of all possible plans. In this case, operators transform
one plan into another, by adding or reordering plan steps that correspond to
actions. The advantage of this alternative formulation is that we can think of
plans as something other than simple sequences of actions.

A solution to the problem depicted in Fig. 2.12 is a sequence of actions:
Move A on top of floor.
Move B on top of floor.
Move D on top of floor.
Move C on top of E.

Note the first three move operations are actually stack pop operations while
the last one is a push. An example of a CLIPS program (see Chapter 5) for this
simple planner can be found in [Giarratano and Riley 1998].

2.10.2 SYMBOL-BASED MACHINE LEARNING AS SEARCH

Another interesting field within computational intelligence is machine
learning. According to [Simon 1983], leaning refers to "any change in a
system that allows it to perform better the second time on repetition of the
same task or on another task drawn from the same population." Various
algorithms have been developed for machine learning. A simple example of
learning using induction has been given in Section 3.6. Later in Chapter 10 we
will discuss several different approaches of machine learning. In the
following, we will only consider symbolic approaches for machine learning
which are built on the assumptions of knowledge-based system. In these
approaches, the primary influence on the behavior of the learning program is
its base of explicitly represented domain knowledge. The elements involved in
a framework for symbol-based learning include the following [Luger and
Stubblefield 1998]:
• The data and goals of the learning task;

 Initial State: Goal State:

A D C
B E E
C F F

• The representation of knowledge (for knowledge used as background as
well as learned knowledge);

• A set of operations to manipulate the background knowledge;
• The concept space consisting of potential concept definitions; and
• Heuristics for search.

The last two elements are closely related. The learner must search the
concept space to find the desired concept. Learning programs must commit to
a direction and order of search, as well as to the use of available training data
and heuristics to search efficiently. A discussion on some useful machine
learning techniques will be provided in Chapter 10.

SUMMARY

In this chapter we discussed the most important concepts in computational
intelligence. It sets the tone for all the remaining chapters where a more
detailed discussion on these concepts will be continued, particularly in
Chapter 3. Search methods discussed in this chapter reflect the philosophy of
general problem solving, which dominates the early history of computational
intelligence. This philosophy has put emphasis on generic algorithms for
solving all kinds of problems, and has been proven to be too ambitious (or too
naïve). Later development of computational intelligence has taken more
pragmatic concerns, such as domain-specific knowledge (see Chapter 5 for a
discussion).

The concept of intelligent agent is very important. In this chapter we
described some very basic features of agents. More discussion on intelligent
agents can be found in [Beinkowski 1998]. Some recent development on
intelligent agents can be found in [Heidler 1999].

There are many issues not discussed in this chapter. Here we point out two
of them. One is related to games. In this chapter we discussed several puzzles.
Games differ from puzzles in that usually it requires two or more parties to
participate. Tic-tac-toe and chess playing are examples of games. The concept
of state space search is important in game playing, and is more complex. One
frequently used strategy is called Minimax, which is a recursive strategy.
Alpha-beta pruning is used to reduce the number of positions that are
evaluated in a minimax search. Alpha is the value that the human has to refute
and beta is the value that the computer has to refute. For more discussion on
Minimax, see [Luger and Stubblefield 1998, Winston 1992]. Another
development is the concept of co-state search, which extended the classical
concept of state in state space search [Chen 1999b].

SELF-EXAMINATION QUESTIONS

1. Give an example to illustrate how state space search can be used to solve
the problem (clearly indicate how to represent the states).
2. Explain the results of three methods discussed in blind search as shown in
Table 2.1.
3. In this chapter we have emphasized how to reach the goal. Another
important issue is to find the solution path. How will you extend the best
search algorithm so that the solution path will be returned?
4. Consider the water jug problem. You are given two jugs, a 4-gallon one and
a 3-gallon one. How can you get exactly 2 gallons of water into the 4-gallon
jug? Note that neither jug has any measuring markers on it, and you are not
allowed to add markers or make any assumptions based on measuring. The
only thing you can use is a pump that can be used to fill the jugs with water.
Please answer the following:

(a) Represent the states in an appropriate way.
(b) What is the initial state and the goal state?
(c) Represent all the mandatory rules used in solving this puzzle.
(d) Find a solution path and indicate all the mandatory rules used.
(e) Are there any heuristics which can be used to improve finding the

solution path?
5. Consider the sliding-tile puzzle. Three white tiles and three black tiles are
separated by an empty space in the configuration shown in Figure 2.14.
Mandatory rules include the following two legal moves; each has an
associated cost:

(i) A tile may move into an adjacent empty location with cost
of 1.

(ii) A tile can hop over one or two other times into the empty
location. This move has a cost equal to the number of tiles
jumped over.

The goal is to have all the white tiles to the left of all the black tiles.

W W W B B B
Figure 2.14 Configuration of sliding-tile puzzle

Now answer the following questions.
(a) Propose a way to represent the states, and indicate the initial state and

all the goal state(s).
(b) Manually find a solution path.
(c) Propose one or more heuristics, as well as corresponding evaluation

functions. Which factors should be considered in designing such a
function?

(d) Use examples to illustrate how the heuristics you proposed are used
in the problem solving process.

REFERENCES
Bienkowski, M.A., A reader’s guide to agent literacy, SIGART Bulletin, 23-
28, Fall 1998.
Chen, Z., Intelligent agents, in The IEBM Handbook of Information
Technology in Business, 1999a.
C hen, Z., S earchin g in du al w o rlds , J. I ntellig en t S ys ttem s , 9(1) , 55 -7 4 , 19 99 b .
Dunken, J., Expert Systems: Design and Development, Macmillan, New
York, 1995.
Giarratano, J. and Riley, G., Expert Systems: Principles and Programing
(3rd ed.), PWS Publishing, Boston, 1998.
Groner, R., Groner, M., and Bischof, W. F. (eds.), Methods of heuristics, L.
Erlbaum Associates, Hillsdale, NJ, 1983.
Hayes, C. C., Agents in a nutshell – a very brief introduction, IEEE
Transactions on Knowledge and Data Engineering, 11(1), 127-132, 1999.
Hendler, J., Special issue on intelligent agents, IEEE Intelligent Systems &
Their Applications, 14(2), 32-37, 1999.
Hofstadter, D (and the Fluid Analogies Research Group), Fluid Concepts
& Creative Analogies: Computer Models of the Fundamental Mechanisms of
thought, BasicBooks, New York, 1995.
Humphrys, M., The future of artificial intelligence, 1999. Available at:
http://www.robotbooks.com/artificial-intelligence-future.htm.
Kolodner, J. L., Case-Based Reasoning, Morgan Kaufman, San Mateo, CA,
1993.
Lenat, D. B., The nature of heuristics, Artificial Intelligence, 19, 189-249,
1982.
Lifschitz, V. (ed.), Artificial Intelligence and Mathematical Theory of
Computation: Papers in Honor of John McCarthy, Academic Press, Boston,
1991.
Luger, G. and Stubblefield, W. A., Artificial Intelligence, (3rd ed.), Addison
Wesley Longman, Harlow, England, 1998.
Mitchell, M., An Introduction to Genetic Algorithms, MIT Press, Cambridge,
MA, 1998.
Newell, A., Unified Theories of Cognition, Harvard University Press, MA,
1990.
Pearl, J., Heuristics: Intelligent Search Strategies for Computer Problem
Solving, Addison-Wesley, Reading, MA, 1984.
Poole, D., Mackworth, A. and Goebel, R., Computational Intelligence,
Oxford University Press, New York, 1998.
Rich, E. and Knight, K., Artificial Intelligence (2nd ed.), McGraw Hill, New
York, 1991.
Russell, S. J. and Norvig, P., Artificial Intelligence: A Modern Approach,
Prentice Hall, Englewood Cliffs, NJ, 1995.

http://www.robotbooks.com/artificial-intelligence-future.htm

Simon, H. A., Why should machine learn? In Michalski, R. S., Carbonell, J.
G., and Mitchell, T. M. (eds.), Machine Learning: An Artificial Intelligence
Approach, Vol. 1, Tioga, Palo Alto, CA, 1983.
Simon, H. A., Artificial intelligence: an empirical science, Artificial
Intelligence, 77, 95-127, 1995.
Tracy, K. W. and Bouthoorn, P., Object-Oriented Artificial Intelligence
Using C++, Computer Science Press, New York, 1996.
Weiss, M. A., Data Structures and Algorithm Analysis in C++ (2nd ed.),
Benjamin/Cummings, Redwood City, CA, 1998.
Winston, H. P., Artificial Intelligence (3rd ed.), Addison-Wesley, Reading,
MA, 1992.

Chapter 3

PREDICATE LOGIC

3.1 OVERVIEW

Continuing our discussion on key notions of search and representation, this
chapter covers a specific form of knowledge representation: predicate logic.
Starting with a discussion on propositional logic or zero order logic, we
present basics of first order predicate logic. Prolog is used as a working
language to illustrate how the reasoning process can be computationally
supported. The Prolog code can also be viewed as the pseudocode for
implementing the solutions in other programming languages. Although few
real world systems are built based on predicate logic, predicate logic serves as
a logical foundation for many other approaches. In this sense, predicate logic
can be considered as a universal language. At the end of chapter, a brief
overview for other forms of logic will also be provided.

3.2 FIRST ORDER PREDICATE LOGIC

3.2.1 BASICS

In this section our discussion will be focused on logic. Our discussion will
be around the following two related themes:
• First order predicate logic (FOPL) as knowledge representation scheme:

We will take a practical approach to cover the materials related to logic.
Since our main interest lies in applying logic to aid decision making
rather than studying logic itself, we will try to use intuitive ways to
describe concepts in logic, so long as this will not sacrifice its application.

• Prolog as a computational programming Language: When we discuss
first order predicate logic, we will use notations consistent with Prolog.
For example, by Prolog convention, the use of character strings starting
with a capital letter is reserved to variables. Therefore, if we want to
represent a constant, such as a person's name "John," we have to write it
as "john". This may look a little odd, but will make it easy for us to
integrate Prolog into our discussion. Note that our purpose is to take
advantage of the reasoning power of Prolog. Therefore, this chapter only
covers some important aspects of Prolog (and should not be considered as
an introduction to the Prolog language).

Our discussion of logic will be an interplay between these two themes.

3.2.2 PROPOSITIONAL CALCULUS

We start with zero-order predicate logic, usually referred to as propositional
calculus (also called propositional logic). In propositional calculus, each
sentence is represented by a token, referred to as a propositional symbol. For
example, the sentences "John is a good student," "Mary is an excellent
student," and "Kim's father is Tom" can be represented as J, M, and K,
respectively. Here J, M, K are all propositional symbols; each has a truth
value T (true) or F(false). Note although this representation is simple, its
expressive power is limited. For example, the first two sentences apparently
are closely related to each other, while the third one is not. However,
propositional logic does not indicate this difference.
 Every propositional symbol and truth symbol is a sentence in propositional
logic. Propositional symbols can be connected together by connectives; they
serve as operators on the propositional symbols. There are five connectives: ¬
("not," which negates the true value), ∧ ("and," the result is true only when
both of the two sentences are true; the result is referred to as the conjunction
of two sentences, these two sentences are called conjuncts), ∨ ("or," the result
is true if at least one of the two sentences is true; the result is the disjunction
of the two sentences referred to as disjuncts), → (imply) and = (equal).
Sentences constructed using these connectives and paired parentheses are
referred to as well-formed formulas (or WFFs). For example, if P, Q, R are
propositinal symbols, then ¬P ∨ Q, ¬ (P ∧ Q) → R. Notice in logic we will
only consider WFFs. An expression is considered as atomic if it cannot be
decomposed into smaller ones. A literal is an atomic expression or its
negation. For example, P is atomic and a literal, ¬P is a literal, and P ∨ ¬P is
not an atomic expression.

Note that a WFF refers to a syntactically correct expression, and has
nothing to say about its truth value. A useful form is to use truth table; for
example, using truth table we are able to prove
 "p → q" = " ¬ p ∨ q",

as shown in Table 3.1.

Table 3.1 A truth table

p q ¬ p ¬ p ∨ q p → q

T
T
F
F

T
F
T
F

F
F
T
T

T
F
T
T

T
F
T
T

A truth value assignment to sentences is called an interpretation. In the
truth table above, each row is an interpretation. A true interpretation is called a
model in logic. In the above table, except the second row, each row represents
a model. If we can find an interpretation to make a proposition expression
true, then we say this propositional expression is satisfiable. Determining if an

arbitrary expression in propositional logic is satisfiable is in the class of NP-
complete problems.

When several propositional symbols are connected together through the
connective ∧ ("and"), we say the result is a conjunction, and each involved
propositional symbol is a conjunct. Similarly, when several propositional
symbols are connected together through the connective ∨ ("or"), we say the
result is a disjunction, and each involved propositional symbol is a disjunct.

The following are some important laws, which can be proved using truth
tables:

The contrapositive law:
 (P → Q) = (¬Q ∨ P)

P ∨ Q = (¬P → Q)

de Morgan's law:
¬(P ∨ Q) = ¬P ∧ ¬Q
¬(P ∧ Q) = ¬P ∨ ¬Q

Commutative law:
P ∧ Q = Q ∧ P
P ∨ Q = Q ∨ P

Associative law:
P ∨ Q ∨ R = (P ∨ Q) ∨ R = P ∨ (Q ∨ R)
P ∧ Q ∧ R = (P ∧ Q) ∧ R = P ∧ (Q ∧ R)

Distributive law:
P ∨ (Q ∧ R) = (P ∨ Q) ∧ (P ∨ R)
P ∧ (Q ∨ R) = (P ∧ Q) ∨ (Q ∧ R)

These laws can be used in combination. For example, by applying distributive
law and deMorgan's law, we have

¬(P ∨ (Q ∧ (¬ P)))
= ¬P ∧ (¬ Q ∨ P)

= (¬P ∧ ¬ Q) ∨ (¬P ∧ P)
= ¬P ∧ ¬ Q.

(The last step is because (¬P ∧ P) always produces a false.)

3.2.3 PREDICATES

Unlike propositional logic, predicate calculus reveals "internal structure" of
a sentence. Just like a propositional symbol, a predicate symbol has a truth
value. In the simplest case, a predicate of arity n consists of a predicate name
and followed by n ordered arguments (also referred to as terms) which are
enclosed in parentheses and separated by commas. For example, "John is a
good student" and "Mary is an excellent student" can be represented as

"student(john, good)" and "student(mary, excellent)," respectively. (Here we
follow the Prolog convention: a character string starting with an uppercase
letter always denotes a variable.) More generally, we can write a predicate like
"student(X, Y)", which can be used to denote any student (which is represented
by the first term, a variable X) with any quality (which is represented by the
second term, a variable Y). On the other hand, "Kim's father is Tom" can be
represented as "is_father(kim, tom)" or simply "father(kim, tom)." Notice that
the order or terms is important, but the exact use of the order is up to you (the
person who writes the predicate). You can represent the same English
sentence by writing "father(tom, kim)," so long as you use this order in a
consistent manner.

As another simple example, suppose we want to express the sentence "John
is a good student" in predicate logic. We have at least the following two ways:

 good-student (john).
 is-student (john, good). (or simply: student(john, good).)

Both answers are correct, but the second one is a little more flexible. If we
want to express Mary is an excellent student, we can use the same predicate
with same number of arguments: is-student(mary, excellent). If we stay with
the first answer, then we have to introduce a new predicate, such as excellent-
student(mary).

We can now point out that logic has an interesting feature: after you
translate English sentences into logic, the rest can be handled in a strict
manner which has a strong flavor of mathematics. The irony is, however, the
process of translation itself is somewhat like an art.

Note in the above example "is-student" or "good-student" is the name of the
predicate (namely, the predicate symbol). This brings the question of how to
name a predicate. Usually the name of the predicate could be a noun or
adjective to denote the property of the arguments (such as in "student(john))",
a noun to denote the relationship among the arguments (such as in
"father(tom, kim))", or a verb to denote the activity participated in by the
arguments (such as in "eat(tom, pizza)," which expresses the activity ("eat")
involving Tom and pizza). The number of arguments of a predicate is referred
to as the arity of the predicate.

The arguments used by a predicate are also referred to as terms; they can be
constants, variables, or functions. A function looks like a predicate in that it
may also take several arguments, but a function usually has a value other than
true or false. In fact, the value of the function is determined by the arguments;
in this sense, it resembles a function as used in mathematics. It is important to
distinguish functions from predicates. For example, if we want to represent
"Paul's father and Tom's father are friends," we can write

 friend(father(paul), father(tom)).
Note here that "friend" is a predicate which has a truth value while "father"

is a function which has a value of a person's name (rather than the value of
true or false). Note also in predicate logic, only the predicates are first order
citizens, while functions are not. That is, a sentence in predicate logic can only

consist of predicates and connectives, and functions can only be used as
components of predicates.

Finally, we point out that as an extension of the propositional logic,
important concepts defined for propositional logic can also be extended to
predicate logic. For example, an interpretation in predicate logic is a truth
value assignment to sentences with all the variables substituted by values.

3.2.4 QUANTIFIERS

The use of variables has extended the power of expression. Variables are
used with quantifiers, which indicate the role of the variables in the
expression. There are two quantifiers used in predicate logic: universal ∀
("for all") and existential ∃ ("there exists"). First order predicate calculus
(also called first order predicate logic, or FOPL) allows quantified variables
and not to predicates or functions. (This explains why propositional logic is
also called zero-order predicate logic, because it does not use variables at all.)
The following example illustrates translating English sentences into logic,
using quantifiers: "For every product, there are at least two brand names
competing to each other."

∀Product ∃S1 ∃ S2 competitor(C1, Product) ∧ competitor(C2,
Product) ∧ ¬ equal (C1, C2). (The last predicate can be written in
infix format: C1 ≠ C2).

Each quantifier has its scope. In this example, all the quantifiers have the
scope of entire statement. But this is not always the case. For example, it is
legal to write ∀X person(X) → ∃Y father(X, Y) (which says everybody has his
or her own father). A predicate statement like this is called a rule, because it
contains an implication.
 The following are important laws involving quantifiers:

¬∃X p(X) = ∀X ¬p(X)

¬∀X p(X) = ∃X ¬p(X)

∃X p(X) = ∃Y p(Y)

∀X q(X) = ∀Y q(Y)

∀X (p(X) ∧ q(X)) = ∀X p(X) ∧∀Y q(Y)

∃X (p(X) ∨ q(X)) = ∃X p(X) ∨ ∃Y q(Y)

3.2.5 KNOWLEDGE BASE

So far we have introduced most important concepts used by predicate logic.
Now we will put these things together. Predicate logic provides a flexible way
to represent knowledge. A piece of knowledge in predicate logic (referred to
as a predicate expression, a predicate statement or a predicate sentence) could
be either a rule or a fact. For example, "∀X goodGPA(X) → goodjob(X)" is a
rule while "goodGPA(john)" is a fact. Note that a fact does not use
implication, and usually does not use variables. When a predicate expression
does not involve any variable, it is said to be ground.

A knowledge base consists of all the predicates (facts and rules) which are
all true at the same time. Sometimes a knowledge base is also referred to as a
database, but we would reserve that term for a different use (see Chapter 4).
More discussion on knowledge bases will be provided later in this chapter, as
well as in Chapter 5.

3.2.6 INFERENCE RULES

The semantics of predicate calculus provide a basis for a formal theory of
logical inference so that new expressions can be derived. Inference rules (or
laws) have been developed to derive new expressions. In order to guarantee
the quality of the inference, certain properties are desired. The following
terminology is directly related to this concern.
• A predicate calculus expression X logically follows from a set S of

predicate calculus expressions if every interpretation and variable
assignment that satisfies S also satisfies X.

• An inference rule is sound with respect to semantics if everything that can
be derived from a knowledge base is a logical consequence of the
knowledge base. Intuitively, soundness requires the derived expression is
"correct," and does not generate any dependencies which should not be
generated.

• An inference rule is complete with respect to semantics if there is a proof
of each logical consequence of the knowledge base. Informally, this is to
say using what should be derived will be derived (nothing is left out).

Of course we hope inference rules are both sound and complete. For
examples of unsound inference rules, see Section 3.6, where abduction and
induction are discussed.

One of the most important inference rules (or laws) in propositional logic
and in predicate logic is modus ponens (which is written in propositional
logic):

Modus ponens: { (P→Q) ∧ P } ⇒ Q
This law is to indicate: given p→q and p, we can infer q. Note that the

double arrow ⇒ works above the content level and denotes "to derive." It
should be distinguished from single arrow →, which denotes "imply" (at the
content level). The law stated here is in the form of propositional logic. It can
also be stated in predicate logic: if ∀X p(X) →q(X) and p(a), we can infer q(a).

Some other important rules are listed below (again in the form of
propositional logic, but also applicable in predicate logic).

Modus tolens: {(P→Q) ∧ ¬Q} ⇒ ¬P
Chain rule (also called transitivity, or law of the syllogism): (P → Q)
∧ (Q→ R) ⇒ P → R

These laws can be used in combination to perform deductive inference (or
simply deduction). For example, given P→Q, ¬Q, and ¬P → R, we can first
use modus tolens to derive ¬P, and then use modus ponens to derive R. This
is an example of simple (deductive) reasoning.

3.2.7 SUBSTITUTION, UNIFICATION, MOST GENERAL UNIFIER

Although predicate logic share many important properties (such as Modus
ponens) with propositional logic, the use of variables makes reasoning process
more complicated. We now introduce two important concepts related to this
problem. Substitution is the process of determining two expressions
(formulas) are same. Unification is the process for determining the
substitutions needed to make two predicate calculus expressions match.
Consider the following example:
 p(X,a,b).
 p(c, Y, Z).
 p(X,Y).
 p(Z,W,d).
 Here is another example:
 father(john, mary).
 father(john, tom).
 father(tom, sue).
 We are looking for a unifier for :
 father(X, Y).
 father(U, V).

In fact, {john/X , mary/Y, john/U, mary/V} is a unifier (the set of
substitution which makes two predicates same), because we can make these
two predicates same by substituting X and U by a constant "john," and by
substituting Y and V by a constant "mary". However, we should also point out
that there is a more powerful unifier, {X/U, Y/V} (or {U/X, V/Y}) , which is
called the most general unifier (MGU), because all the possible unifiers for
these two predicates are just special cases of the most general unifier.

In general, substitution may be carried out between two variables, between
a constant and a variable, but cannot happen between two constants. In
addition, a constant can be unified with a function, so can a variable be unified
with a function, if the function does not contain that variable as an argument.
The test of this restriction is referred to as occurs check. For example, a
variable Y cannot be replaced by p(Y) as this creates an infinite expression:
p(p(p(p…(Y)…))).

3.2.8 RESOLUTION -- THE BASIC IDEA

We are now ready to discuss the issue of reasoning using resolution. The
key idea for the resolution method is that it is a refutation proof -- use the
knowledge base and the negated goal to obtain null clause (which indicates
contradiction). Since the knowledge base by itself is consistent, the
contradiction must be introduced by the negated goal. As a result, we have to
conclude that the original goal is true. The resolution proof can be considered
as a generalization of modus ponens, because it can do more things than
modus ponens does. The knowledge base used in resolution proof takes the so
called clause form, which is a form of conjunction of disjuncts: each

individual clause is expressed with disjunction as the connective and no
conjunction is allowed within each disjunct. For example, (a ∧ b) ∨ c is not in
clause form, but it can be converted to clause form, because it can be rewritten
as (a ∨ c) ∧ (b ∨ c), which is in clause form, because both (a ∨ c) and (b ∨ c)
are disjunts. The advantage of restricting to clause form is to make the proof
process as an automated one.

In general, there are several steps for resolution refutation proofs: change to
clause form; negate the goal; resolve clauses using substitution; and produce
contradiction. The following are nine steps needed to convert a predicate into
its equivalent clause form.
1. Eliminate the → by using the inference laws introduced earlier.
2. Push ¬ inside to reduce the scope of negation as much as possible.
3. Standardize variable names by renaming all variables so that variables

bound by different quantifies have unique names.
4. Move all quantifiers to the left without changing their order.
5 . Eliminate all existential quantifiers through skolemization, which is

illustrated by the following examples. ∃X∀Y p (X,Y) can be rewritten as
p(X0, Y). ∀X∀Y∃Z q(Z) can be written as q(f(X,Y)), here X0 is a Skolem
constant and f is called a Skolem function. Note that in both cases the
existentially quantified variable was replaced by a function which has all
the universally quantified variables appearing before this variable as its
arguments. In the first example, there is no variable appearing before X,
so X becomes a constant (we can name it in any way, because we just
want to denote it as a constant, the exact content is not of our concern). In
the second example, universally quantified variables X and Y are the
arguments of the new function, because it depends on the actual values of
X and Y (again, we do not care about the exact name of this function).

6. Drop all universal quantification.
7. Convert the expression to the conjunct of disjuncts form.
8. Make each conjunct a separate clause.
9. In each clause generated by Step 8 give the variables different names.

Note that these nine steps should be applied to each predicate statement in
the knowledge base; so if the knowledge base is quite large, this conversion
could be quite tedious. Fortunately it is not necessarily to do something in
some steps (because the requirement is already satisfied). For a detailed
discussion of these steps involved in conversion to clause form, the reader is
referred to [Luger and Stubblefiled 1998]. In the following, we illustrate the
general steps of resolution proof using a very simple example, which also
includes the conversion of clause form.

Given: A man is a person.
 All persons will die.
 Socrates is a person.
Goal: We want to prove that Socrates will die.

The proof can be done by invoking modus-ponens twice (try it!). If we use
resolution proof instead, we first do the conversion. The result of conversion
for each predicate statement (left) is shown in the right.

 Predicate form Clause form
From what is given:

1. ∀ X man(X) → person(X) ¬man(X) ∨ person(X)

2. man(scorates) man(scorates)
3. ∀Y (person(Y) →die(Y)) ¬person(Y) ∨ die(Y)

Negated goal:
4. ¬die(socrates) ¬die(socrates)

The process of the resolution proof is shown in Figure 3.1. The two clauses,
"¬man(X) ∨ person(X)" and "¬person(Y) ∨ die(Y)" are resolved to form a
resolvant "¬man(Y) ∨ die(Y)." These two clauses can be resolved because
they are opposite literals. (Since resolvants are produced by two clauses, the
resolution method discussed here is called binary resolution.) The resolvant is
constructed by take the disjunction of all the other atoms appearing in these
two parent clauses. Also note the role of unification in this process. The entire
proof is done as the construction of the resolution tree (the root is at bottom,
an empty clause as the root indicates a contradiction has been found).

Figure 3.1 A resolution proof tree

The following are some important properties of resolution proof:
• Refutation completeness: The empty or null clause can always be

generated whenever contradiction in the set of clauses exists.
• Soundness: It produces only expressions that logically follow.

 ¬man(X) ∨ person(X) ¬person(Y) ∨ die(Y)

 {Y/X}

 ¬man(Y) ∨ die(Y) man(socrates)

 {socrates/Y}

 die(socrates) ¬die(scorates)

[]

Here is another example of resolution proof:

Given: ∀X p(X) →q(X).

 ∀Y q(Y) → r(Y).

Goal: ∀Z p(Z) → r(Z).

We first convert to clause form (without connectives like ¬ , → and in
disjunct form):

(i) ¬p(X) ∨ q(X)

(ii) ¬q(Y) ∨ r(Y)

To convert the negated goal to clause form, we have the following steps:
 ¬(∀Z p(Z) → r(Z))

= ¬(∀Z ¬p(Z) ∨ r(Z))

= ∃Z p(Z) ∧ ¬ r(Z)

= p(z0) ∧ ¬r(z0) (The step illustrates skolmization.)

Since the pieces used in resolution proof should be in disjunct form (these
disjuntions are conjuncted), the negated goal is split into two clauses:

(iii) p(Z0)
(iv) ¬ r(Z0)

 The steps of the resolution is shown in Figure 3.2.

Figure 3.2 Another resolution proof tree

 (ii) (iv)

 z0/Y

 (v) ¬q(z0) (i)

 z0/X
 (vi) ¬p(z0) (iii)

 []

3.3 PROLOG FOR COMPUTATIONAL INTELLIGENCE

We are now ready to introduce Prolog and use Prolog to continue our
discussion on FOPL. This treatment will allow us to take advantage of
Prolog's representation and reasoning power. In fact, the Prolog programs can
be viewed as pseudo codes and can be implemented in various languages,
including C++.

3.3.1 BASICS OF PROLOG

PROLOG stands for programming for logic. It is a general purpose
programming language, but is particularly suitable for reasoning in
computational intelligence programming.

3.3.1.1 A sample Prolog program
Consider the following Prolog program.
 father(john, tom). % john is tom's father.
 father(tom, mary).
 father(tom, dave).
 grandfather(larry, kim).
 grandfather(X,Y) :- father(X,Z), father(Z,Y).
(Note: "%" denotes the rest of the line contains comments.)

This program allows us to submit queries such as to find who is who's
father or who is who's grandfather. In addition, it also allows us who is who's
child or grandchild by taking the advantage of unification (see Section
3.3.1.8).

3.3.1.2 Structure of a Prolog statement
In general, a Prolog program implements connectives in first order

predicate logic: "and" is implemented as (,), "or" is implemented as (;), "only
if" is implemented a (← or :-), and the built-in predicate "not" denote ¬.
 A Prolog statement (called Horn clause) is of the form
 A :- B1, B2, ..., Bn.
 Head body

Note that there is at most one symbol in left hand side (LHS), which is
referred to as the positive symbol. The reason of calling it the positive symbol
can be understood by examining the following relationship between the
conversion of the expressions:

A :- B1, B2, ..., Bn

≡ A ← B1, B2, ..., Bn

≡ B1, B2, ... Bn → A
≡ ¬ (B1 ∧ B2 ∧ ... Bn) ∨ A

It is important to note that there are two readings for a Prolog statement:
• Declarative reading: A if B1 and... and Bn.
• Procedural reading: to do A, do B1, then... then do Bn.

For example, consider the following:
 grandfather(X,Z) :- father(X,Y), father(Y, Z)

This statement defines the concept of grandfather: X is the grandfather of Y
if there is a person Z so that X is Z 's father and Z is Y 's father. This is the
declarative reading. The same statement also has a procedural reading: In
order to make X the grandfather of Y, X should first become the father of a
person Z, and Z should become the father of Y. Which reading is more
appropriate? In this particular example, probably the declarative one, but in
some other cases, procedural reading may be more appropriate.

An important note should be given here that Horn clause calculus is
equivalent to the full FOPL for proofs by refutation. Another note is that in
Prolog terminology, a fact can be considered as a rule without body (such as
"father(john, tom)" in the above example). As a further note, we point out that
the following two rules:
 a:-b.
 a:-c.
are equal to one rule:
 a :-b; c.
 This is because by using distributive law and de Morgan's law, we have

(b → a) ∧ (c → a)

= (¬b ∨ a) ∧ (¬c ∨ a)

= (¬b ∧ ¬ c) ∨ a

= ¬ (b ∨ c) ∨ a

= (b ∨ c) → a

3.3.1.3 Remarks on structure of a Prolog program
We now give some remarks on how a Prolog program is structured. For

more detail on Prolog language and its use in computational intelligence,
please refer to references [Clocksin and Mellish 1987; Covinton, Nute and
Vellino 1988 Shoham 1994, Sterling and Shapiro 1994, Deransart, Ed-Dbali
and Cervoni 1996].
(a) All rules are true in the "knowledge base" at the same time, so they form

a conjunction.
(b) Predicates with the same predicate name are grouped together. For

example, the two statements on "grandfather" can be considered as a
procedure "father." Earlier we introduced the perspective of viewing a
predicate as denoting a relationship. What is being discussed here denotes
another perspective.

(c) Different order of clauses (rules) or different order of predicates may
affect the behavior of the program (this is due to implementation-related
considerations, not from logic).

(d) Predicates with the same predicate symbol may have a different number
of arguments (but predicates with a different number of arguments will

not unify). For example, it is legal to write p(X,Y) and p(a,Z,b), but they
will not unify.

(e) The head of a predicate with the same predicate name in different rules
may have different names for arguments (but with same arity). For
example, in one rule we may have p(X,Y) :- … while in another rule we
may have p(Z,[]) :-… and in a third one we may have p(_,W). (Note the
underscore represents an unnamed variable in Prolog.)

(f) Prolog answers queries by unification. In unification, positions of
arguments are important, while names of variables are not. Section
3.3.1.8 provides a little more detail on unification.

(g) Quantifiers in Prolog: You can think of variables appearing only in body
("local") as being existentially quantified, and parameter variables as
universally quantified. For example, consider the following rule:

 grandfather(X,Z) :- father(X,Y), father(Y, Z).
both variables X and Z are universally quantified, while Z is local to the
body. The corresponding FOPL statement is:

∀X ∀Y grandfather(X,Y) ← ∃Z father(X,Z), father(Z,Y).
(h) Remark on "global" variables: There are no global variables in the sense

of conventional languages. "Global" information is passed around through
arguments.

3.3.1.4 Two kinds of queries (retrieval and confirmation)
In an information system such as a knowledge base system, a query is a

statement requesting the retrieval of a specific piece of information. In Prolog,
we can retrieve a stored fact or a fact which can be derived from the existing
rules and facts. There are two ways to submit queries for retrieval:

 ?- grandfather(john,Y).
 %find John's (one or all) grandchildren.
 ?- grandfather(X, mary). %find Mary's grandfather.
 ?- grandfather(john, mary). % confirm or disconfirm.

 Consider the following simple example:
 takes(george, cs101). %George takes CS101 course.
 takes(george, math201).
 takes(george, mis201).
 takes(sue, cs101).
 takes(sue, math202).
 takes(kim,cs101).
 friends (X,Y) :- takes(X,Z), takes(Y,Z).
 %X and Y are friends if they take the same course.

The following two queries illustrate two different types of query, namely,
confirmation or retrieval:

 ?- takes(george, cs101). %confirmation type
 ?- takes(george, X). %retrieval type, X will be substituted by a
 % constant if such substitution exists.

 There are some basic things we should know about Prolog:

(a) For a retrieval type query, if a user enter a semicolon(;) after an answer
is retrieved, that means the user is looking for other answers. By this way,
a user can ask for all answers.

(b) There are two cases when the system returns a "yes": success for a
confirmation type query; more answers for retrieval type query.

(c) There are also two cases when the system returns a "no": fail (for
confirmation type queries) or no more answers (for retrieval type queries).

3.3.1.5 Closed world assumption
Closed world assumption (CWA) refers to the assumption that nothing else

exists outside the closed world of the knowledge base. It is closely related to
another notion, negation as failure. Prolog answers queries using this
assumption. For example, if we submit a query "likes(tom, wine)," the answer
would be no, because it is not in the knowledge base nor can it be derived.
The search was limited to a small world.

3.3.1.6 Answering query through depth first search
In either case of query answering, Prolog tries to prove a goal (in case of

retrieval type, a guess may be made first; order of predicates may make a
difference.) A depth-first search tree (DFS) with necessary backtracks will be
constructed dynamically. This is an And/Or tree because some nodes (the
"and" nodes) denote conditions which must be satisfied together while other
nodes (the "or" nodes) denote conditions which must be satisfied separately.
 As a concrete example, consider the following knowledge base in Prolog:
 q(a). %(1)
 r(c). %(2)
 s(b). %(3)
 p(X) :- q(X),write('r4'), nl. %(4)
 p(X) :- write('r5'), nl, q(X). %(5)
 p(X) :- s(X), r(Y). %(6)

Consider the query "p(b)." We want to determine the output produced by
this program, and draw depth first search trees to explain the results obtained.
Since this is confirmation type, at the vary beginning, X is bound to b. Rule
(4) is first tried, and since it is not successful, rule (5) is then tired, which
failed again. Finally Rule 6 is used and the query is eventually confirmed.
Note that both node (5) and node (6) "are" and nodes. Note also that each time
after a dead-end is reached, a new subtree is constructed.

Figure 3. 3 A Prolog search tree

 p(b)
 (4) | (6)
 (5)
 c(Y)
 failure write('r5') nl failure (2) (3)
 (looking for (looking for
 q(b)) q(b))

3.3.1.7 Relationship with resolution proof
It is the time to give an important remark on the semantics of Prolog,

particularly the relationship between Prolog and resolution proof: The set of
Horn clause expressions is a subset of the resolution clause space in logic
programming and the resolution theorem prover is acting as a Prolog
interpreter. The role of resolution theorem prover described here is not quite
accurate, but we will not pursue this further, since our main interest is in
applied aspects of Prolog. A little more detailed discussion on this issue can
be found in [Luger and Stubblefield 1998].

3.3.1.8 Unification through recursion
Recursion plays an important role in Prolog; in fact, looping is performed

by recursion. Recursion is natural for a language for reasoning. Just think
about the retrieving all of a person’s ancestors. Using recursion is much
appropriate than using iteration, and one major reason is that usually we don't
know how many generations away from the considered person there are. In
general, recursion refers to what a program module (for example a procedure
or a function) calls itself. In Prolog, recursion occurs when a predicate refers
to itself (namely, the same predicate symbol appears in both the head and the
body). In fact, even the search process is recursion-based. Just like in a
conventional programming language, recursion requires a general case and a
base case.

The list data structure is a good example of learning recursion-based search
in Prolog. An example of Prolog list is [a, b, c]. A list can be viewed as
consisting of a head and a tail: the head of a list is simply the first element of
the list (caution: there is no relationship between the head of a list and the
head of a Prolog rule!), while the tail is the rest of the entire list (so it is still a
list!). We can write a list using the notation of [H|T] (here H stands for the
head while T stands for the tail) is not same as [H, T]). Note this is different
from writing it as [H,T]. For example, [a, b, c] can be unified with [H|T], here
H = a, T = [b, c]

We can now study how recursion is done on Prolog list. Consider the
following predicate which checks the membership of a list (Note member is
actually a built-in predicate):
 member(X,[X|T]). %base case
 member(X,[Y|T]) :- member(X,T). %general case

These two predicates actually form a procedure. Its meaning can be
explained as:
 If X is identical with the head of a list
 Then X is a member of this list
 Else we have to check whether X is a member of the tail of the list.
 Here are some sample queries:

?- member(a,[a,b,c]). %confirmation
?- member(X,[a,b,c]). %retrieval

 Now consider another example:
 length([], 0).

58 Predicate logic

 length([H|T], N) :- length(T, M), N is M + 1.
The meaning of this program can be explained as follows:
 To find the length N of a list L do
 if L is empty then let N = 0
 else find the length M of the tail of L,
 then add 1 to M giving N.

As one more example, consider the algorithm for merging two sorted lists
(used in merge sort as well as in many external sorting methods. You may
compare a recursive program in C or Pascal.

merge([],L2,L2).
merge(L1,[],L1).
merge([H1|T1], [H2|T2], [H1|Rslt]) :-
 H1<H2,!, merge(T1, [H2|T2], Result).
merge([H1|T1], [H2|T2], [H2|Rslt]) :-
merge([H1|T1], T2, Result).

3.3.1.9 More remarks on unification
Continuing our previous example, how would Prolog answer the query of

p(X)? Even though this is a retrieval type of query, Prolog still uses pretty
much the same way as illustrated in the above. One important difference is
that instead of trying to confirm p(b) directly, the search engine has to start
from a guess. Rule (4) will be tried first as before, but the variable X in p(X)
will not be unified with any constant until fact (1) is used to satisfy Rule 4.
Unlike the previous query, this time executing rule (4) results in success.
Another important remark about retrieval type of query is that if the user is
interested in additional answers, then the construction of search tree continues.
Different from the case of confirmation type of query, a new subtree could be
constructed not because of the failure, but because of looking for more
answers. The reader is advised to complete the search tree for answering query
p(X).

3.3.1.10 Using built-in predicates
The following are some built-in predicates in Prolog:

• not: a predicate introduce as a logical connective;
• cut (written as !): a goal with no arguments; it always succeeds and

prevents backtracking;
• fail: a predicate introduced due to some language consideration,
• nl: new line.

For other built-in predicates in Prolog, please consult a Prolog book, such
as [Clocksin and Mellish 1987, Covington et al. 1988].

3.3.2 SAMPLE PROLOG PROGRAMS

3.3.2.1 "I am my own grandfather" puzzle
The following is taken from N. Wirth's 1976 book with some

simplication:

I married a widow (w) who has a grown-up daughter (d). My father
(f) fell in love with my step-daughter and married her. Some months
later, my wife gave birth to a son (s1).

Form the queries and get the answers for each of the following:
(a) Form a query to find who is my grandfather;
(b) Form a query to find all grandfather/grandchild relationship;
(c) Form a query to find who is who's brother-in-law;
(d) Form a query to find who is who's uncle;
(e) Form your own query (indicate its English meaning).

In order to answer these queries, you may need to include additional
knowledge (e.g., the grandfather is father's father). You should also try to keep
this kind of information as minimal as possible. For example, if there is a
predicate is-father(X,Y) (which means X is Y's father), then there is no need
to keep a predicate is-son , because is-son(A,B) can be expressed as is-
father(B,A). The skeleton of the code is given below. A portion of this
program is to be completed by the reader.

husband(i,w).
husband(f,d).
mother(w,d).
mother(w,s1).
father(f,i).
father(i,s1).
 No more facts needed; the following are rules.

father(X,Y) :- f_in_law(X,Y).
 %This is to say f_in_law is considered as father.
father(X,Y) :- husband(X,Z), mother(Z,Y).
 %Can you explain the meaning of

%this rule in English?
f_in_law(X,Y) :- %How to define father in law?
b_in_law(X,Y) :- ...
brother(X,Y) :- b_in_law(X,Y).

%b_in_law is considered as brother.
uncle(X,Y) :- ...

% X is Y's uncle if Z is Y's father and
X is Z's brother.

grandfather(X,Y) :- ...
 % Define grandfather in terms of father.
__

3.3.2.2 Farmer, wolf, goat and cabbage puzzle revisited
Our next example is to implement the farmer, wolf, goat and cabbage

puzzle in Prolog. First, we should defining the mandatory rules required for
solving the problem. These rules are mandatory (and thus are distinguished

from heuristic rules) because they must be followed. For example, each
mandatory rule must respect the fact that the farmer is the only rower and he
can only carry at most one item (other than himself). It should also respect the
fact that the wolf and the goat cannot be left alone, and that the goat and
cabbage cannot be left alone. There are several ways to express the mandatory
rules in this puzzle. One easy way is to form a rule for each item can be
carried by the farmer: the wolf, the goat, the cabbage, and himself. The
following program is adopted and revised from [Luger and Stubblefield
1998].The readers should note the parameter B in the move statements. Since
Prolog does not have the concept equivalent to global variable in many
conventional languages, the effect of global variable has to be achieved
through parameter passing. Here B is passed around to keep track of the
visited states stored in the stack.

Prolog program for the FWGC puzzle

unsafe([X,Y,Y,_]):-opp(X,Y).
unsafe([X,_,Y,Y]):-opp(X,Y).

opp(w,e).
opp(e,w).

move([X,X,G,C], [Y,Y,G,C], B) :-
 opp(X, Y),
 not(unsafe([Y,Y,G,C])),
 not(member_stack([Y,Y,G,C], B)),
 writelist(['try farmer takes wolf: ',Y, Y, G, C]).

move([X,W,X,C], [Y,W,Y,C], B) :-
 opp(X, Y),
 not(unsafe([Y,W,Y,C])),
 not(member_stack([Y,W,Y,C], B)),
 writelist(['try farmer takes goat: ',Y, W, Y, C]).

move([X,W,G,X], [Y,W,G,Y], B) :-
 opp(X, Y),
 not(unsafe([Y,W,G,Y])),
 not(member_stack([Y,W,G,Y], B)),
 writelist(['try farmer takes cabbage:',Y,W,G,Y]).

move([X,W,G,C], [Y,W,G,C], B) :-
 opp(X, Y),
 not(unsafe([Y,W,G,C])),
 not(member_stack([Y,W,G,C], B)),
 writelist(['try farmer takes himself:',Y,W,G,C]).

move([F,W,G,C], [F,W,G,C], _)
 :- writelist([' BACKTRACK from:', F,W,G,C]),

fail.

path(Z,Z,L):-write('Solution Path is:'), nl,
 reserveprint(L).
path(X,Y,L):-move(X,Z,L),
 stack(Z,L,N), path(Z,Y,N).

%The following are stack ops
empty_stack([]).

stack(T, S, [T|S]).

member_stack(E,S):-member(E,S).

add_list_to_stack(L,S,R) :- append(L,S,R).

%end stack operations

%writelist and reserveprint are writing routines.
writelist([]):- nl.
writelist([H|T]):-print(H),tab(1),writelist(T).

%reserveprint is used to check the contents of the
%stack. Not a good operation for defining a stack.
reserveprint(S):-empty_stack(S).
reserveprint(S):-stack(E,R,S),reserveprint(R),
 write(E), nl.

%The following are driving and testing routines.
go(S,G):- not(unsafe(S)), not(unsafe(G)),
 empty_stack(E), stack(S, E, B),
 path(S, G, B).
go(S,_):- unsafe(S), write('Start unsafe!!'), nl.
go(_,G):- unsafe(G), write('Goal unsafe!!'), nl.

test :-go([w,w,w,w], [e,e,e,e]).
 %Other tests may be added.

The following is a sample execution:
 ?- test.
try farmer takes goat: e w e w
try farmer takes himself: w w e w
try farmer takes wolf: e e e w

try farmer takes goat: w e w w
try farmer takes cabbage: e e w e
try farmer takes wolf: w w w e
try farmer takes goat: e w e e
 BACKTRACK from: e w e e
 BACKTRACK from: w w w e
try farmer takes himself: w e w e
try farmer takes goat: e e e e
Solution Path is:
[w,w,w,w]
[e,w,e,w]
[w,w,e,w]
[e,e,e,w]
[w,e,w,w]
[e,e,w,e]
[w,e,w,e]
[e,e,e,e]
yes

The depth first search tree constructed from execution is shown in Figure 3.4.

Figure 3. 4 Depth first search tree for FWGC puzzle

3.3.3 SUMMARY OF IMPORTANT THINGS ABOUT PROLOG

 In summary, the following are important things to know about Prolog; they
also illustrate important factors used to support reasoning:

• Recursion,
• Unification,
• Closed world assumption,
• Depth first search, and
• Resolution proof.

 [wwww] (initial)

 [ewew]

 [wwew]

 [eeew]

 [weww]

 [eewe]

 [wwwe] [wewe]

 [ewee] [eeee]
 (dead end, backtrack) (goal)

3.4 ABDUCTION AND INDUCTION

3.4.1 OTHER FORMS OF REASONING

As already briefly mentioned, deduction (or deductive reasoning) refers to
logical reasoning in which conclusions must follow from their premises.
Materials presented so far in this paper have been devoted to deductive
reasoning using first order predicate logic. In the remaining part of this
section, we provide a brief discussion on other forms of inference.
Particularly, we will give a brief introduction on abduction and induction.
There are two important remarks on these two reasoning methods. First,
unlike deduction, both abduction and induction are not sound. Intuitively, this
is to say both of these two methods do not guarantee the result of reasoning is
"correct." We will explain the reason when we introduce these two methods.
From the first remark comes the second remark: If a reasoning method is not
sound, why do we study it at all? In fact, although abduction and induction are
not sound, they are still closely related to deduction (see additional reading).
Studying abduction and induction (as well as other forms of reasoning) will
help us to understand the nature of reasoning. In addition, abduction and
induction are very useful, because they allow us to derive conclusions which
cannot be done using deduction. For example, abduction and induction can
play an important role in creativity. This gives us a chance to discuss
abduction and induction in other chapters of this book. For example, we will
review the concept of abduction in Chapter 5 when we discuss the explanation
facility in expert systems, and we will get back to the issue of induction when
we discuss machine learning (Chapter 10). In addition, the discussion on
computerized creativity, as presented in Chapters 7 and 8, are also related to
induction and abduction.

3.4.2 INDUCTION

Induction refers to the inference from the specific case to the general. The
following is a simple example of induction. Suppose we have observed facts:

fastcar(toyota, 2000).
fastcar(chevy, 2000).
fastcar(dodge, 2000).
…
fastcar(…, 2000).

From what we have observed above, we may want to draw the conclusion:
fastcar(Any-model, New).

More generally, if we have observed
 p(a) → q(a),

 p(b) → q(b),

we may attempt to conclude ∀ X , p(X) → q (X). This is actually a
generalization process. Although this seems to be reasonable, we cannot take
it for granted, because we may not be able to check every individual value of
X; and so long as there is one possible value of X which makes the conclusion
false, then the conclusion is not true. Apparently, inductive reasoning is not
sound, but it is very useful, because it is pervasive in our daily thinking.

3.4.3 ABDUCTION

Note that in a sense, inductive reasoning can be considered as the "inverse"
of modus ponens as used in deduction, because if we know ∀X, p(X) → q(X),
then we can conclude p(a) → q(a), p(b) → q(b), etc. using modus ponens.

Abduction can be considered as another "inverse" of modus ponens. The
basic idea of abduction can be described by comparing it with modus ponens:

Modus ponens: (p→q) ∧ p ⇒ q

Abduction: (p→q) ∧ q ⇒ p

Abduction is not sound because although p implies q, the existence of q
does not necessarily imply p is true, because there may be some other reason
to make q true. Nevertheless, abduction is useful because it provides a clue for
the possible cause. Therefore, abduction is sometimes referred to as reasoning
from observed facts to the best explanation.

It has been shown that abduction can be reduced to deduction on a
transformed (completed) domain theory that explicitly contains the
assumption that all the direct explanations of an event have been represented;
under such an assumption, an event implies the disjunction of its explanations.
This provides further intuition for abduction. Detail is discussed in [Torasso,
Console, Portinale and Theseider 1995].

3.5 NONMONOTONIC REASONING

First order predicate logic is very basic, and its reasoning power is still
limited. Non-standard logic has been developed to enhance the reasoning
power. There have been various proposals. In this section we give a brief
discussion about this issue. The materials presented here are important, but for
those readers who are not interested in pursuing any theoretical studies, most
of this section (except subsection 3.5.1) can be skipped.

3.5.1 MEANING OF NONMONOTONIC REASONING

The standard logical formalisms of reasoning are mostly monotonic:
discovering new information can only increase the set of conclusions to be
reached. In other words, the more you know, the more conclusions you can
draw. Note that the reasoning based on a monotonic formalism has very
limited ability in the exploration of the coherent relations between the data

sets and their real world implications, and is inadequate in handling the
incompleteness and imprecision of the data sets. In reality, much of human
reasoning is nonmonotonic, bceasue learning new facts may actually cause
retraction of previously held beliefs. If you heard WhiteTiger is a tiger, you
will say WhiteTiger eats animals. But if we have learned that WhiteTiger is
just a paper-tiger, we have to retract our previous conclusion. Nonmonotonic
reasoning aims to capture the notion of commonsense reasoning and to reveal
the attribute coherence under uncertainty and incompleteness [Ginsberg
1987]. In particular, knowledge resulting from nonmonotonic reasoning is
often not in the form of iron clad rules, but consists of defaults subject to
exceptions that are valuable to real-world applications.
 Nonmonotonic reasoning was first proposed in the late 1970s. Since then, it
has received much attention from the research community in computational
intelligence. As indicated by McCarthy in the earlier age of nonmonotonic
reasoning, when probabilistic reasoning (and not just the axiomatic basis of
probability theory) has been fully formalized, it will be formally
nonmonotonic [McCarthy 1980]). Recently, an update procedure was
proposed to handle nonmonotonic change of knowledge. In addition, the use
of default representations in incremental learning has been propased, where a
belief can be retracted. (A little more discussion on nonmonotonic reasoning
can be found in Chapter 11.)

3.5.2 COMMONSENSE REASONING

As a concrete approach of nonmonotonic reasoning, let us take a look at
how to use logic to model human commonsense using commonsense
reasoning [McCarthy 1981]. A program is said to have commonsense if it
automatically deduces for itself a sufficiently wide class of immediate
consequences of anything it is told and what it already knows. Commonsense
reasoning can thus serve as a tool for building intelligent agents.
 A program or person has common sense if the following properties hold:

Property 1: It knows a sufficiently large set of facts of the
environment where it lives;
Property 2: It can increment what it knows by automatically
deducing a sufficiently large set of immediate consequences;
Property 3: It can increment what it knows by being told (concerned
with natural language processing).

Properties 1 and 2 distinguish between what the program knows and what
allows it to deduce new facts from what it knows -- a distinction between
common sense knowledge and common sense reasoning. A very similar
distinction is a distinction between the epistemological and the heuristic part
of intelligence. These three properties are at the core of McCarthy's research.
McCarthy was more concerned with establishing logical and mathematical
foundations for reasoning, while some other well-known researchers (such as
M. Minsky) was more involved with theories of how we human beings
actually reason using pattern recognition and analogy, as well as the fragility

of contemporary expert systems (as he observed, "some expert systems need
common sense"). (A discussion on expert syatems is given in Chapter 5.)

In order to study commonsense reasoning, the following three kinds of
adequacy has been defined:

a. A representation is called metaphysically adequate if the world
could have that form without contradicting the facts of the aspect of
reality that interests us.
b. A representation is called epistemologically adequate for a person
or machine if it can be used practically to express the facts that one
actually has about the aspect of the world.
c. A representation is called heuristically adequate if the reasoning
processes actually gone through in solving a problem are expressible
in the language.

The word epistemology is used as many philosophers use it, but with a
different emphasis. Philosophers emphasize what is potentially knowable with
maximal opportunities to observe compute, whereas computational
intelligence researchers must take into account what is knowable with
available observational and computational facilities. It can be argued that the
requirement of heuristic adequacy really amounts to requiring
epistemologically adequate representations of reasoning. It is a derived notion,
and therefore less important than the notion of epistemological adequacy.

However, though logic is a very good starting point which allows
formalizing many forms of common sense, it is far from having the
expressibility needed to represent commonsense. Nevertheless, formalizing
commonsense reasoning using a logic-based approach reveals many important
aspects of commonsense reasoning which may not be obtained otherwise.

3.5.3 CIRCUMSCRIPTION

A specific technique in commonsense reasoning is called circumscription.
According to McCarthy, we can confirm part of the intuition by describing a
previously un-formalized mode of reasoning called circumscription, which we
can show does not correspond to deduction in a mathematical systems. The
conclusions it yields are just conjectures and sometimes even introduce
inconsistency. We will argue that humans often use circumscription and so do
robots. Informally, circumscription is a rule of conjecture that allows a person
or program to jump to the conclusion that the objects which can be shown to
have a certain property P by reasoning on a given set of facts are all the
objects that satisfy P. More formally, let P be a predicate symbol and S a first
order sentence. Let S(Φ) be the result of replacing all occurrences of P in S
with Φ. Then the circumscription of P in Φ is the sentence schema

S(Φ) ∧ ∀x. (Φ(x) → P(x)) → ∀x.(P(x) → Φ (x))
wherex stands for the tuple x1, …, xn. Intuitively, this formula says that if
S(Φ) holds, and Φ if has a smaller extension of P, then P and Φ have the
same extension. In other words, the set of objects which satisfy P is made as
small as that satisfying Φ.

Reasoning schemes such as default logic, monomontonic logic and
circumscription are designed to handle reasoning with default rules and
retraction of beliefs. There are a series of difficult issues encountered by these
approaches, and so far no default reasoning system has successfully addressed
all of these issues. In addition, most logical systems are formally undecidable,
and very slow in practice [Russell and Norvig 1995].

3.5.4 SUMMARY OF NONMONOTONIC REASONING

 In summary, nonmonotonic approaches have shared such assumptions as:
classical logic is insufficient, there is a need for a declarative solution, and the
solution should be symbolic as opposed to numeric. Proof based approaches
include default logic (by Reiter) and Modal approaches (by McDermott and
Doyle). Minimization approaches are exemplified by McCarthy's
circumscription. Connections have been found among these various
approaches. The work on truth maintenance has a strange relationship to
r esear ch in n o nm o n o to n ic r easo n in g [G ins b er g, 1 9 87] . A lth ou g h th e d is cu s sio n
on nonmontonic reasoning as discussed in this section falls in the context of
logic, it does not have to be so. In fact, nonmonotonic reasoning has a close
relationship with knowledge based systems (Chapter 5) as well as reasoning
under uncertainty (Chapter 10).

As a final remark, we point out that many other approaches have been
developed for logic-based problem solving, such as fuzzy logic, temporal
logic, as well as others. In Chapter 12, we will take a look at some aspects of
fuzzy logic. A discussion on some other approaches can be found in [Turner
1984].

SUMMARY

In this chapter we provided a discussion on deductive reasoning using first
order predicate logic. We also introduced Prolog as a language for learning
first order predicate logic (although strictly speaking they are not equivalent to
each other). The advantage of learning Prolog is due to its reasoning power.
Prolog code provides a high level description of problem solving process and
can be viewed as pseudo code which can be implemented using other
programming languages (such as C++).

Predicate logic plays an important role for decision support problem
solving. In the next chapter we will discuss relational database in the context
of predicate logic. Although in this chapter we have emphasized deductive
reasoning, we have also briefly introduced other reasoning methods. Other
related discussions will be provided in later chapters (including Chapter 6).

SELF-EXAMINATION QUESTIONS

1. Is this true: ∃X (p(X) ∧ q(X)) = ∃X p(X) ∧ ∃Y q(Y)? Why or why not?

2. Why use stack in solving the FWGC problem?
3. Consider the chain rule, which was presented in propositional logic. How to
write it in predicate logic? How to prove it using binary resolution?
4. In Chapter 2 we considered the following simple puzzle:

Mozart visited Vienna three times, and he died there. On which of the
three visits did he die?

How will you solve this puzzle by writing a simple Prolog program?
5. Consider ADTs stack operations using Prolog implementation. Note that
the same predicate "stack(Top, Stack, [Top|Stack])" can be used for both push
and pop operation. Explain the role of unification in performing these two
operations, and give several queries to illustrate how to use this predicate.

REFERENCES

Clocksin, W. F. and Mellish, C. S., Programming in Prolog (3rd ed.),
Springer-Verlag, Berlin and New York, 1987.
Covington, M. A., Nute, D. and Vellino, A., Prolog programming in depth,
Prentice Hall, Upper Saddle River, NJ, 1988.
Deransart, P., Ed-Dbali, A. and Cervoni, L., Prolog: The Standard
Reference Manual, Spring-Verlag, Berlin, 1996.
Ginsberg, M. L., Introduction, in Readings in Nonmonotonic reasoning (M.
L. Ginsberg ed.), pp. 1-24, 1987.
Luger, G. and Stubblefield, W., Artificial Intelligence,3rd ed., Addison-
Wesley Longman, Harlow, England, 1998.
McCarthy, J., Circumscription - A form of nonmonotonic reasoning,
Artificial Intelligence, 13 (1 & 2), 1980.
Russel, S. and Norvig, P., Artificial Intelligence: A Modern Approach,
Englewood Clliffs, NJ.: Prentice Hall, 1995.
Shoham, Y., Artificial intelligence techniques in Prolog, Morgan Kaufmann
Publishers, San Mateo, CA, 1994.
Sterling, L. and Shapiro, E., The Art of Prolog: Advanced Programming
Techniques (2nd ed.), MIT Press, Cambridge, MA, 1994.
Torasso, P., Console, L., Portinale, L. and Theseider, D., On the role of
abduction, ACM Computing Surveys, 27(3), 353-355, 1995.
Turner, R., Logic for Artificial Intelligence, Ellis Horwood, New York,
1984.

Chapter 4

RELATIONS AS PREDICATES

4.1 OVERVIEW

In this chapter we extend the concept of predicates to relations. We first
introduce the concept of relation, then explain why a relation can be viewed as
a predicate. This will provide a unified perspective toward data and
knowledge retrieval. This examination leads to the discussion of formal
languages (declarative and procedural) for manipulating data represented
through relations; in particular, relational algebra is discussed in some detail.
We further discuss integrity constraints and issues related to relational
database design. The basics of Datalog, a variation of Prolog suitable for
database management, are also briefly discussed.

4.2 THE CONCEPT OF RELATION

A relational database consists of structured data stored in a set of relations.
By structured data we mean each relation has a schema which consists of a set
of attributes. For example, a company database may have a relation to hold
employee information such as employee ID, name, salary, etc. (which form a
schema), a relation to hold department information, as well as other relations.
Intuitively, a relation is just a table. Although this concept seems to be far
away from a collection of predicates, the concepts of relation and predicate are
closely related. Recall the following predicates discussed in Chapter 3:

Father(john, tom).
Father(tom, mary).
Father(tom, dave).

We can rewrite these predicates into a table form with the name of "father"
consisting of two columns; each is an argument in the predicate "father," as
shown in Table 4.1.

Table 4.1 A table rewritten from predicates

Father_name Child_name
John
Tom
Tom

Tom
Mary
Dave

More formally, a relation is defined as a subset of a Cartesian product of a
list of domains. For example, the father relation is a subset of the Cartesian

products of all possible names of fathers and all possible names of children.
Here the domain of an attribute refers to all possible values that attribute can
take. Conversely, each row in the relation (usually referred to as a tuple) can
be viewed as a predicate. For example, consider the relation shown in Table
4.2 (let us call it r):

Table 4.2 A relation
A B C
a1
a1
a2

b1
b2
b3

c1
c2
c1

This relation can be represented as a collection of predicates: r(a1, b1, c1),
r(a1, b2, c2) and r(a2, b3, c1). It can also be expressed using set notation: r =
{(a1, b1, c1), (a1, b2, c2), (a2, b3, c1)}. In this book, we will mainly use the
table format, but in order to save space, occasionally the set format may also
be used.

Viewing relations as predicates has the advantage of integrated treatment of
data management and knowledge management, because relations can be
conveniently used to represent data (as to be discussed in this chapter).
However, viewing relations as predicates and viewing relations as subsets of
Cartesian product may not always be consistent to each other. One such
difference is the order of columns (arguments or attributes) and order of tuples
(rows). If we take a strict set-theoretic perspective, both columns and rows are
not ordered in a relation. However, as we have learned from predicate
calculus, the order of arguments does make sense. For convenience of our
discussion, we will assume the order of column is important, while the order
of tuples is not important.

4.3 OVERVIEW OF RELATIONAL DATA MODEL

4.3.1 SCHEMA AND INSTANCE

We introduce the following basic terminology.
A relation schema comprises a list of attributes and their corresponding

domains ("top layer" of the table), similar to a variable type definition. For
example, in the father relation, the schema consists of attributes Father_name
and Child_name.

A relation instance is a value of a variable (e.g. an array); it refers to the
contents of a relation (consists of all tuples).

We use the notation: r(R), here the little r stands for the relation (the
instances) while the big R stands for the schema. For example, we can write
father(Father), where "father" stands for the actual tuples while "Father"
stands for the schema.

4.3.2 DECLARATIVE AND PROCEDURAL LANGUAGES

Data are stored in a relational database to satisfy users' information needs.
Users submit queries to retrieve information. The language used for
submitting queries falls in one of the two categories: declarative (users specify
what they want) or procedural (users specify how to get the needed
information). Query languages can also be categorized as either formal (which
are used for theoretical studies) or commercial (which are supported by
commercial products and have syntactical "sugar" added). In this chapter, we
study formal languages, focusing on relational algebra (RA), which is a
procedural language. A popular commercial language, SQL, which is based on
relational algebra but with some declarative flavor, will be discussed in the
next chapter.

To write a query in relational algebra, a user should specify the information
needs in terms of relational operators. More detail will be given in the next
section.

The formal declarative language in relational databases is called relational
calculus (RC). RC is in fact a form of first order predicate calculus
(introduced in Chapter 3). There are two kinds of RC: Tuple relational
calculus (TRC) and domain relational calculus (DRC).

 In TRC, tuple variables are used. The range of a tuple variable is the
whole relation. The general format to write a query in TRC is to specify the
set consisting of tuples with desirable properties. If we use t to denote a tuple
variable t which ranges over the entire resulting relation, we have

{t | what you want (properties)},
To be more specific, we have

{ t | condition1 ∧ condition2 ∧ …∧ conditionn}.

Each condition in the above query is a predicate. For example, consider a
loan relation in a banking database with schema Loan = (loan-no., amount). A
query for retrieving all tuples with loan amount greater than $1,200 can be
written as

{t | t ∈ loan ∧ t [amount] > 1200}

Intuitively, the philosophy of TRC is to view each table consisting of rows
(tuples). Alternatively, we may think that each table consists of columns.
Therefore, in domain relational calculus (DRC), we need one domain variable
per column. Each tuple is constructed from domain variables, and a query in
DRC has the following format:

{d1,d2,d3,…dn | cond(d1,d2,..dn)}
Conceptually DRC is similar to TRC, but technically it is a little more difficult
(because in TRC a tuple can be directly represented by a variable, while in
DRC, each tuple should be constructed from domain variables).

An important notion in relational calculus is safety. To understand what is a
safe query, we just need to know what is unsafe: a query may result in an
infinite relation. For example, the following query is unsafe, because it asks
for all tuples not satisfying a certain property, and this could result in an
infinite number of tuples to be retrieved:

{t | ¬(t ∈ loan)}

How to deal with this problem? Note that in the above query the infinite
relation is caused by the negative condition "not in". To guarantee a safe
query, we can impose restrictions by using some positive conditions.

The reason to study relational calculus is partly due to its theoretical
importance. It has been established that the following three are equivalent in
expressive power (here equivalence means they can be converted to each
other): relational algebra (RA, to be discussed below), safe TRC, and safe
DRC.

4.4 RELATIONAL ALGEBRA

4.4.1 PREVIEW OF RELATIONAL ALGEBRA

In order to write RA queries, we should first understand RA operators. We
start with some simple examples. Table 4.3(a), (b) and (c) depict three
relations respectively: relation u (U) for undergraduate student information,
relation g (G) for graduate student information, and relation a (A) for address
information.

Table 4.3 Three relations
(a) (b)

Sname Major GPA Sname Major GPA
Sue K. Fung
David M. Wilson
…

CS
Math
…

3.3
2.2
…

Mary K. Fox
Ken S. Robertson
…

IT
CS

3.1
3.5
…

(c)
Sname Address
Mary K. Fox
David M. Wilson
…

12435 Dodge
1600 Farnam
…

 The following are some examples of English queries:
• Find names and addresses of all students.
• Find names and addresses of all grad students.
• Find names of grad students.

The following are some simple examples of using relational operators. A
discussion on these operations (including syntax) will be given in the next
subsection.
• Union: u ∪ g. This is to find student name, major and GPA of all

students.
• Set difference: u - g. This is to find student name, major and GPA of

undergraduate students who are not graduate students -- assuming an
undergraduate student in one major could be a graduate student in another
major.

• Project: πmajor(u). This is to find all undergraduate majors.

• Select: σmajor='CS' (g). This is to find student name, major and GPA of
graduate students majored in computer science.

• Cartesian product: u × a. This is to establish all possible combinations of
undergraduate student information and address information. This
operation can be followed by a select operation to find addresses for
undergraduate students as shown in the following query: π u.Sname, a.Address

(σ u.Sname=a.Sname u × a). Cartesian product can be used to carry out join
operation (see below).

It is important to note that relational database can be considered as a
knowledge base of ground facts. One can use Prolog rules to define the
relational algebra operations. (Actually there is a version of Prolog called
Datalog which is used for database. A brief discussion on Datalog can be
found at the end of this chapter.) In the following we rewrite the above
queries in Prolog rules.
• Union: student(S-name, Major, GPA) :-
 undergraduate (S-name, Major, GPA).
 student(S-name, Major, GPA) :-
 graduate (S-name, Major, GPA).
• Set difference: non-grad(S-name, Major, GPA) :-
 undergraduate (S-name, Major, GPA),
 not graduate (S-name, Major, GPA).
• Project: under-major(Major) :- undergraduate(S-name, Major, GPA).
• Select: cs_graduate(S-name) :- graduate(S-name, comp-science, G).
• Join: under-addr(S-name, Major, GPA) :-
 undergraduate(S-name, Major, GPA), address(S-name, Address).

Note that the join operation can be considered as performing Cartesian
product followed by a selection. More discussion on join operation will be
provided later.

4.4.2 HOW TO FORM A RELATIONAL ALGEBRA QUERY FROM A
GIVEN ENGLISH QUERY

It is important to be able to form an SQL query for a given English query.
Informally, the following are some important things which should be
considered in SQL query construction:
• Study the database schema as well as the schema for each realtion;
• From the interested attributes identify relevant relations;
• From the attributes, find relations, find other attributes in same relation;
• Be aware that same attribute may have different names in different

relations;
• Decide appropriate RA operators (such as connecting two relations using

join);
• Form the conditions in the where statement (such as SSN = ...).
 Note that the result of a query is a relation (which has a schema).

Overall, the following are basic issues involved in relational database
retrieval:
• Form the English query;
• Form the RA query from the English query;
• Explain RA query in English;
• Tell what is the result (i.e., the actual tuples retrieved) given actual

relations.

4.4.3 RELATIONAL ALGEBRA: FUNDAMENTAL OPERATORS

4.4.3.1 Unary operators (Within same relation)
Select: Find tuples satisfying condition C from relation (r) is expressed as

σC(r). Note: C is a predicate, for example, (sname = 'J. Dole') and (GPA =
2.5).

Project: Find a specific attribute or set of attributes with name A from
relation r, is expressed as πA(r).

Rename: ρx(E) returns the result of expression E under the name x . For
example, ρgood-student(σgpa>3.0 (undergraduate)) renames undergraduate students
with GPA greater than 3.0 as good-students.

4.4.3.2 Binary operators
We have the following set-theoretic operations:
Union: The results include all tuples in r or s: r ∪ s (remove duplicates).

A requirement for the union operation is that both relations involved should be
union compatible, meaning that the two relations should have same arity and
the corresponding attributes should be in the same domain. The union
operation has the following features:

Commutative: r ∪ s = s ∪ r

Associative: (r ∪ s) ∪ p = r ∪ (s ∪ p)
Set Difference: The result includes tuples in r but not in s : r - s. Just like

the union operation, it requires union compatibility. Note that set difference
operation is not commutative: r - s ≠ s - r

Cartesian Product: r × s, it combines information from two relations.

4.4.4 RELATIONAL ALGEBRA: ADDITIONAL OPERATORS
In general, additional operators can be expressed in terms of fundamental

operators or just for the convenience.
• Assignment (used in a way similar to intermediate variable):

temp ← πR-S (r)

The next five operators are very useful ones.
• Set intersection: This is a set-theoretic binary operation. The result should

return tuples in both relations r and s. Using Venn diagram we can easily
verify r ∩ s = r - (r - s). Therefore, a set intersection can be replaced by
two consecutive set differences.

• Join: This is a binary operation based on Cartesian product. We first
consider the general theta join, then consider the natural join (which is
usually used in queries).

• Theta join (in general form): r θ = σθ (r × s). The condition may
involve attributes with same name but in two different relations. To avoid
confusion, attribute A1 (such as S-name in relation r may be denoted as
r.A1.) An example of Theta join with condition B < D on the following
two given relations r and s is shown in Table 4.4.

Table 4.4 An example of Theta join
(a) Relation r(R) (b) Relation s(S)

A B C D E
1
4
7

2
5
8

3
6
9

3
6

1
2

(c) Result of r B < D s
A B C D E
1
1
4

2
2
5

3
3
6

3
6
6

1
2
2

• Natural join: Join condition satisfies only equality comparison, with
duplicated attributes removed. Natural join uses exact same notation as
theta join, except the subscript (which indicates the join condition) is
dropped. A simple example is given in Table 4.5.

Table 4.5 An example of natural join
(a) Relation r(R) (b) Relation s(S) (c) Relation r s

A B C C D A B C D
4
5
2

9
16
12

8
7
7

7
4
8

12
18
10

4
5
2

9
16
12

8
7
7

10
12
12

• Division: Among all the RA operators, this one may be the most difficult
one. There are two questions related to division operator: (a) when to use
it, and (b) what is the result. To answer both questions, we need to
consider the following. Roughly speaking, division is "almost" the inverse
operation of Cartesian product. Therefore, in order to answer (a), a
division r ÷ s should be carried out to obtain the result which should hold
all the features of s. For example, if we want to identify students who
have received all awards in a University, we may need a division
operation to carry out the job. A correct understanding of the meaning of
the division will prevent writing syntactically incorrect queries involving
division.

The second question in regard to division, namely, what is the result of
division, can also be answered by considering division as the inverse of
Cartesian product. It can also be answered by take a look at the actual process

as indicated in the following definition. Formally, suppose r(R) and s(S) are
relations and S ⊆ R, then division is defined as

r ÷ s = πR-S(r) - πR-S ((πR-S × s) - πR-S,S(r))

This formal definition is a little scary. Fortunately, in order to get the result
of division, you don't have to follow these steps. Since division is "almost" the
inverse operator of Cartesian product, a simple way is to start by considering
("guessing") possible answers and constructing Cartesian product (as to be
explained in the class). Table 4.6 provides an example. Given r(Award, SID)
and s(Award), we want to know which students have received all awards. The
query requires us to compute t = r ÷ s. Note that a simple select operation does
not do the job, because although it can find students who have received at
least one award, it cannot find students receiving all awards. Note also that
this division is legal because the schema of s is contained in the schema of r.
The resulting table should contain only one column SID.

Table 4.6 An example of division
(a) Relation r(Awards,SID)

Award SID
a1
a2
a3
a4
a1
a3
a2
a3
a4
a1
a2
a3

b1
b1
b1
b1
b2
b2
b3
b3
b3
b4
b4
b4

(b) Relation s(Awards) (c) Result t(SID)
Award SID

a1
a2
a3

b1
b4

How to calculate t(SID)? Since t(SID) may at most contain four values (b1,
b2, b3, b4), for each of them, we form a Cartesian product with tuples in
s(SID), and check whether the result is in r(Award, SID). If for the same value
of SID, all the possible Cartesian products are found in r(Award, SID), then
the value of B should be in the result. For example, for b2, the Cartesian
product (a2, b2) is not in r(Award, SID), so b2 is not included in the result.

4.4.5 COMBINED USE OF OPERATORS

In reality, many queries can be expressed by combined use of select (σ),
project (π), and join () operations. The basic structure of the commercial
language SQL (to be discussed in Chapter 5) resembles these operations.
Therefore, a good understanding of RA would help us to write SQL queries.

4.4.6 EXTENDED RA OPERATIONS

RA operations can be considered at different levels: fundamental,
additional, and extended. Extended RA operators include generalized
projection, outer join, and aggregation functions. Here we take a look at
aggregation functions. Aggregation functions take a collection of values and
return a single value as a result. There are five aggregation functions: count,
sum, avg, max, min. Aggregation functions play a very important role of On-
Line Analytical Processing (OLAP) for decision support queries. More
discussion will be provided in Chapter 5 when we discuss the commercial
language SQL.

4.5 RELATIONAL VIEWS AND INTEGRITY
CONSTRAINTS

In this section, we discuss two important and related issues: relational views
and integrity constraints.

4.5.1 VIRTUAL VIEWS AND MATERIALIZED VIEWS

Relational views are personalized collection of relations. They are
constructed through queries. For example, in the student database, one user
may be interested in all students who have good GPAs and their addresses,
while another user may be interested in GPAs of undergraduate students
majored in sciences. One or more views can be constructed for each user's
information need. Furthermore, a view can be defined by other views and
relations and can be used as a relation. Note that relation views are virtual
tables because they are usually not stored. Views are typically implemented as
follows: When a view is defined, the database system stores the definition of
the view itself, rather than the result of evaluation of the RA expression that
defines the view. When a view relation is used in a query, it is replaced by the
stored query expression. Therefore, whenever the query is evaluated, the view
relation is recomputed. Views are a useful tool for queries, and additional
views can be further defined using previously views, or a combination of
previously defined views and stored relations.

 However, in some applications, in order to avoid recomputation, it would
be desirable to store view relations. Stored views are referred to as
materialized views. Recent development in data warehousing and On-Line
Analytical Processing (OLAP) has made the study of materialized views an
active research area. More discussion on materialized views will be in Chapter
11.

4.5.2 INTEGRITY CONSTRAINTS

Note that although views are a useful tool for queries, they present
significant problems if we allow updates, insertions or deletions to be
performed on views. The difficulty comes from the fact that a modification to
the database expressed in terms of a view must be translated to a modification
to the actual relations in the logical model of the database. As a simplest
example, let us consider a view involving one relation only. Consider a
relational schema S_info = (SID, major, GPA) with F = {SID → major, SID
→ GPA}. Apparently SID is the key. A view is constructed with schema S1 =
{major, GPA}, which is a virtual relation with SID removed from S_info.
Suppose S1 consists of two tuples: {(CS, 3.5), (MIS, 3.6)}. (Here we use the
predicate format to represent a relation.) Now assume a user wants to insert a
tuple (Math, 2.8) into S1. This request should be translated into an insert of
tuple (?, Math, 2.8) into S_info. Note the question mark ? stands for a null
value, because SID is not specified in the user's request. If we do allow this
insert operation to occur, we will end up with a new tuple in S_info which
does not have the primary key. Apparently this is a scenario we should avoid.
For this reason, modification through views should be carried out carefully.
Commercial products may disallow modification through views entirely (or
only provide mechanism to allow modification through only one view).

The above discussion is concerned with a more general topic, namely, the
consideration of integrity constraints. In fact, integrity constraints are an
important concern for stored relations as well. In general, integrity constraints
(ICs) provide a means of ensuring that changes made to the database by
authorized users do not result in a loss of data consistency. There are several
forms of ICs. One important form of IC is called referential integrity, and will
be discussed in the next section. Other forms include domain constraints,
assertions, triggers, functional and other forms of dependencies.
• Functional dependencies are a very important form of IC and are a very

important factor which affects relational database design. Among other
things, functional dependencies can be used to determine the primary key
of a relation. A key (or superkey) in a relation is a set of attributes which
uniquely determines the values of all attributes. As a simple intuitive
example, in a student relation with schema (name, ID, major, GPA), the
name or ID of a student should determine all the attributes (assuming
names and IDs are all unique). Therefore, student name is a key, and ID is
another key. Note also that a key combined with any other attributes is
still a key. For example, name combined with major is a key. Therefore, it
makes sense to define the concept of candidate key, which refers to a set
of attributes which uniquely determine the value of other attributes, and if
any attribute is removed from the candidate key, it will no longer be a
key. Apparently, candidate key may not be unique; for example, student
name and ID are two candidate keys. Therefore, there is a need to define
the concept of primary key, which is the designated candidate key
actually used by the database designer. In our example either student

name or ID can be designated as the primary key. Concepts related to
keys and functional dependencies play important roles in relational
database design, and will be discussed in the next section.

• Referential integrity refers to a particular kind of integrity constraint to
ensure data consistency. It is concerned with the situations in which
change in a relation may affect other relations; it usually involves foreign
keys. For example, consider a relation for course registration in a
university database. If a previously planned course is to be dropped, all
the tuples in the registration relation referring that course should be
dropped as well. It is therefore important to preserve the referential-
integrity constraint. We will revisit this issue in Section 4.6.6.

• An assertion is a predicate expressing a condition that we wish the
database to always satisfy; it may involve several relations.

• Triggers (active rules): A trigger is a statement that is executed
automatically by the system as a side effect of a modification to the
database. An active rule consists of condition and action. An active
database is equipped with active rules, and can be considered as a special
form of knowledge-based system.

In general, an integrity constraint is a clause of the form
false :- a1, … ak,

where commas denote "and," the ai's are atoms and false is a special atom that
is false in all interpretations.

At the first sight, one may think ICs may have very limited usefulness, they
turn out to be a very powerful tool. In databases, there are often constraints
that the designer of a database knows should never be violated. If a database
ever violates an IC, an error message should be displayed, and the offending
clauses should be identified. In a relational database, integrity constraints are
assertions database instances that are compelled to obey. Therefore, ICs play
an important role in agent-based database problem solving. To illustrate, we
consider the following two types of integrity constraints.
(a) An IC specifies that some conjunction of conditions should never be true

of a database; for example, that no instructor should have taught a
graduate-only course and a freshman course in the same semester at the
same time slot 4:00pm - 5:15pm, Monday and Wednesday.

(b) An IC specifies that some condition should always be provable when
another is; for example, a payment should be made to an employee at the
end of each month

4.6 FUNCTIONAL DEPENDENCIES

Integrity constraints play an important role in relational database design.
Although this book is not intended for a theoretical study of this topic, we will
study several important forms of integrity constraints, including functional
dependencies.

4.6.1 DEFINITION OF FUNCTIONAL DEPENDENCY

Let α ⊆ R and β ⊆ R be two sets of attributes. The functional dependency
(FD) α→ β holds on R if, in any legal relation r(R), for all pairs of tuples t1

and t2 in r such that if t1[α] = t2[α] then t1[β] = t1[β]. Intuitively, this is to say
that if two tuples agree on α, they should also agree on β. For example, in the
backing relation, we have "a-no → balance" and "a-no → bname." Of course
we can also write "a-no → a-no," but such kind of functional dependencies are
only of theoretical importance. In general, we say a functional dependency
α→ β is trivial if β ⊆ α. Note that functional dependencies can be considered
as a special case of implication as discussed in first order predicate logic. Note
also {A, B} → C ≡ AB → C, and for convenience we will always write AB →
C instead of {A, B} → C.

It is important to know how to identify functional dependencies. In general,
functional dependencies (and other forms of dependencies, as to be discussed
later) are determined by the semantic relationship among the attributes. The
database designer should collect the information among the attributes during
the analysis stage. For example, we know that the student ID should uniquely
determine the student GPA and major from reality, before we have retrieve the
actual student data. In general, it is not a good idea to write functional
dependencies by scanning a small set of data. However, in some cases, the
dependency information is not available and we may have to identify
functional dependencies through observation from given data. In this case,
functional dependencies may be obtained using machine learning techniques
(a discussion on machine learning is given in Chapters 10 and 11).

4.6.2 KEYS AND FUNCTIONAL DEPENDENCIES

The notion of functional dependency shares some common concerns with
primary keys or candidate keys. For example, consider the account relation in
a banking database consisting of attributes a-no (which stands for account
number), balance and bname (which stands for branch name). Note that a-no
functionally determines balance and bname, and a-no is the key of the account
relation. However, in general, if α→ β, α does not have to be the (candidate)
key. For example, if we consider relation R = (ABC) with the set of functional
dependencies F: {A→ B, B→ C}, then apparently B is not the key. Therefore,
functional dependencies have extended the notion of (candidate) key.
Examples will be provided in Section 4.6.5 when key-finding algorithms are
discussed.

The relationship between keys and functional dependencies can be
examined from two directions:
(a) From superkeys to functional dependencies. We should understand the
following two issues:
• Functional dependencies are a generalization of superkeys;
• Functional dependencies allow us to express constraints that cannot be

expressed by superkeys.

(b) From functional dependencies to candidate keys. We can find candidate
keys from functional dependencies as illustrated from the following example
[Elmasri and Navathe 1994]. Suppose we have R=(ABCD): with F: {A →
BCD, BC → AD, D→B}; we can find the candidate keys are A, or BC or DC
At this time, we are only able to verify this by applying the definition of the
candidate key. In addition, after we discuss inference rules in Section 4.6.3,
several key-finding methods will be introduced. At that time, we will be able
to find these keys as well.

4.6.3 INFERENCE RULES: ARMSTRONG AXIOMS

The inference rules, usually referred to as Armstrong axioms, are important
inference laws used to manipulate functional dependencies. They work on the
top of functional dependencies. Note that functional dependencies may cross
relation borders within a database. To determine candidate keys for a specific
relation, all the functional dependencies concerning the attributes in the
schema of this relation should be considered.
Armstrong axioms--basic (α and β are two sets of attributes):

 Reflective rule: αβ ⇒ α
 Augmentation rule: {α→β} ⇒ {αγ→βγ}
 Transitivity rule: {α→γ, γ →δ} ⇒ {α→δ}

The following are additional rules. They can be proved using the basic rules,
but it would be more convenient if we use them as rules.

 Union rule: {α→β, α→γ} ⇒ α→βγ
 Decomposition: {α→βγ} ⇒ α→β and α→γ.
 Pseudotransitivity: {α→β, γβ→δ} ⇒ αγ→δ

Armstrong axioms are sound and complete rules, in the sense introduced in
Chapter 2.

As a simple example of applying Armstrong axioms, let us reconsider
R=(ABCD) with F: {A → BCD, BC → AD, D→B}. We can derive DC→A.
This is because from D→B (given) we have DC→BC (using augmentation
rule), by applying transitivity rule on DC→BC and BC → AD (given), we
derive DC→AD. Then by decomposition rule, we get DC→A.

4.6.4 CLOSURES AND CANONICAL COVER

In order to develop useful algorithms related to relational database design,
we need the following concepts based on the set of functional dependencies F.
• Closure of α (attributes) under F, denoted as α+ is a set of attributes that

can be determined by (or reached from) α (a set of attributes) by
repeatedly applying Armstrong axioms on FDs. This definition also
indicates the basic algorithm for calculating α+.

• Closure of F (denoted as F+): The set of all functional dependencies
logically implied by F . This definition also implies the basic algorithm of
calculating F+.

As a simple example, consider R=(ABC) with F: {A → B, B → C}; we can
identify the elements in F+ and in A+:

F+: {A → B, B → C, A → C, A → AB, AB → C,…}
A+ = ABC

Canonical cover Fc of F provides a sort of "standard" of F: A canonical
cover Fc is a rewriting of F which meets three conditions:

• Fc is equivalent to F in that Fc
+ = F+; this is to say that Fc and F can

derive exactly the same sets of attributes.
• No FD in Fc contains an extraneous attribute; for example, if we

know A → C, then B in AB → C is extraneous.
• Each left side of a function dependency is unique; for example, if we

have F = {A → B, A → C, B → D}, then we should use the union
rule to combine these functional dependencies to form F = {A → BC,
B → D}, to guarantee the uniqueness of A.

4.6.5 ALGORITHMS FOR FINDING KEYS FROM FUNCTIONAL
DEPENDENCIES

The following are two important aspects related to finding (candidate) keys:
(a) determine whether a given set of attributes is a key or not.
(b) find candidate keys from a given set of FDs.

All given functional dependencies as well as trivial functional dependencies
should be considered.

Usually relational database textbooks do not provide key-finding
algorithms. For convenience, in the following we provide an informal
description of several algorithms. Note that in some cases one algorithm may
be more appropriate than the others.

Let us use the following example to illustrate these methods: S =
(ABCDEF) with F: {AD → B, AB → E, C → D, B → C, AC → F}.

• Method 1. Attributes elimination to find a key: Starting from all attributes,
remove any attributes that can be derived from any other attributes (or
their combinations). In our example, one possible elimination order is: B,
E, D, F. So we find a key AC. Using different elimation order B, E, C,
F, we may find another key AB. Note that we cannot remove C and D at
the same tine. (Why?)

• Method 2. Attribute inclusion to find a key: Starting from one attribute,
see whether it can determine all other attributes. If not, include one more
attribute. Continue until all attributes can be determined. In our example,
we have A+ = A; if we try to add D, we have AD+ = ABCDE (please
verify by yourself). So AD is a key.

• Method 3. Selected inclusion of attributes: This can be considered as an
improvement of method 2, but should start from Fc. Start from all
attributes which appear only in the left-hand side of any FD. If they
cannot determine all other attributes, consider the inclusion of any other

attributes which appear in both left and right hand side of all FDs.
Continue until all attributes can be determined. In our example, we have:

 L (Left only): A
 B (Both Left and Right): BCD
 R (Right only): EF (not in any key)

Considering all the combinations, we have obtained the following keys:
AB, AC, AD.

4.6.6 REFERENTIAL INTEGRITY

The concept of primary key allows us to re-examine referential integrity in
more detail. As an example, consider the following relation schemas in a
banking database (primary keys are underlined):
 account(a-no, balance, branch-name)
 branch(branch-name, branch-city, assets)

(a) Insert a tuple into a referencing relation: A referencing relation is
characterized by having foreign key(s). When we insert a tuple into such a
relation, we should check referenced relation. In the banking example, the
account relation is a referencing relation because it references the branch-
name. In order to insert a new tuple into the account relation, we should first
make sure that the branch name referenced in that tuple exists in the branch
relation.

(b) Delete a tuple from a referenced relation: A referenced relation has its
primary key used as foreign key by some other relation. To delete a tuple from
such a relation, we should check whether this tuple is used by a referencing
relation r ; if yes, we reject the delete command, or the tuples in r which
reference this tuple themselves must be deleted. In the banking example, the
branch relation is a referenced relation. If we want to delete a tuple in a branch
relation, we should make sure no more accounts reference this branch. Note
that deletion may lead to cascading deletions.

(c) Update: The content of a tuple is changed. There are two cases.
• Case 1: updating referencing relation (a relation has a foreign key): It is

handled in a way similar to insert.
• Case 2: updating referenced relation (the primary key of the relation is

referenced by another relation): It is handled in a way similar to delete.

4.7 BASICS OF RELATIONAL DATABASE DESIGN

4.7.1 WHAT IS THE MEANING OF A GOOD DESIGN AND WHY
STUDY IT?

It is important to keep in mind that functional dependencies are defined in
the entire relational database. A relational database may consists of one or
more relations. One may wonder why we use just one relation for a database.
If the schema of a relation consists of all the attributes of a relational database,

it is referred to as the universal relation schema. In reality, however, instead
of having one large relation in a database, usually we have a database with
multiple relations. So how to determine the number of relations needed, and
how to determine which attributes should go to each relation? This is a
question of relational database design, and functional dependencies play an
important role in this design process.

In order to understand what is a good design, it is important to understand
what are undesirable features and anomalies of a bad design. To illustrate this,
consider a student database schema consists of SID, courseID, section,
instructorID, as well as other attributes. As for functional dependencies, we
know course ID and section together can determine the instructorID. Suppose
the database consists of a relation with schema (SID, courseID, section,
instructorID). Is this a good design? Or, are there any undesirable features in
this relation? Since each relation can be viewed as an abstract data type
consisting of operations such as adding a tuple, deleting a tuple, and changing
values within a tuple, in the following we briefly examine each of these
operations.
• Insert: Each time a student registers for a course with a particular section,

the InstructorID will be repeated. This kind of redundancy does not only
waste memory, but may also cause inconsistency.

• Delete: If one section so far has only one student registered for the course,
and that student has decided to change to some other courses, then this
only tuple should be withdrawn. Note that when this tuple is deleted, the
information about the course instructor is also deleted. If this is the only
place to store the information about the instructor, then the instructor
information for this section will no longer be available. (On the other
hand, if the instructor information is also stored somewhere else, then the
redundant information may cause problems similar to what happened in
the insert operation as discussed above).

• Update: Suppose a student wants to change to another section; then what
should be changed is not the section number alone, but the instructorID as
well. Otherwise, inconsistency may occur.

The problems cited above are usually referred to as anomalies. How to deal
with these anomalies? One solution is through decomposition: If a relation has
some undesirable features, then we decompose it into smaller relations to
remove these undesirable features. Consequently, two questions should be
answered: A convenient way of checking undesirable features, as well as a set
of algorithms to perform needed decomposition. Actually, these two questions
are closely related. Both questions can be answered by considering two
criteria: One is concerned with the "goodness" of individual relation, which is
usually referred to as normal forms, and the process of obtaining relations
with certain normal forms is usually referred to as normalization. However, a
set of normalized relation may not necessarily guarantee that when they work
well as a whole. In other words, a different criterion should be developed to
reflect the global quality of a relational database design.

Based on the above discussion, the remaining part of this section will be
organized based on the two criteria just mentioned:
• Desirable features for individual relation: Normal forms. In particular, we

discuss the following normal forms:
♦ Boyce-Codd Normal Form (BCNF); and
♦ Third Normal Form (3NF).

• Desirable features for decomposition -- "Global" design criteria. We will
discuss two of them:
♦ Lossless-join decomposition; and
♦ Dependency preservation.

Combining these two sets of criteria, we will introduce two decomposition
algorithms:
• Lossless-join decomposition into BCNF; and
• Dependency-preserving, lossless-join decomposition into 3NF.

4.7.2 BOYCE-CODD NORMAL FORM (BCNF) AND THIRD
NORMAL FORM (3NF)

We introduce the following terminology. A relation schema R is in Boyce-
Codd normal form (BCNF) with respect to a set F of functional dependencies
if for all functional dependencies in F+ of the form α→β, where α ⊆ R and β
⊆ R, at least one of the following (a) or (b) holds. (Note: The definition
actually says: The LHS of any nontrivial functional dependencies must be a
super key.)

A relation schema R is in Third normal form (3NF) with respect to a set F
of functional dependencies if for all functional dependencies in F+ of the form
α→β, where α ⊆ R and β ⊆ R, at least one of the following (a), (b) or (c)
holds. Note that because of (c), the definition allows transitivity dependency
in one relation.

(a) α→β is a trivial functional dependency (i.e., β ⊆ α)
(b) α is a superkey for schema R .
(c) β is a prime attribute of R -- namely, β is a member of any
candidate key in R.

The above definitions can be extended from individual relations to the
whole relational database. A database design is in BCNF (or 3NF) if each
member of the set of relation schema that constitutes the design in in BCNF
(or 3NF).

As an example of BCNF and 3NF, consider R=(ABCD) with F consisting of
(1) A → BCD,

(2) BC → AD,

 (3) D → B.

This relation is in 3NF, because we can check each functional dependency:
(1): A is a superkey, so it satisfies (b).
(2): BC is a superkey, so it satisfies (b).

(3): B is a member of candidate key BC, so it satisfies (c).
You may also verify that all functional dependencies satisfy (c) -- just to
verify RHS of each functional dependency is a member of a candidate key:

In (1): B and C are members of candidate key BC, D is a member of
candidate key CD.
In (2): A is a candidate key by itself, D is a member of candidate key
CD.
In (3): B is a member of candidate key BC.

Note that to verify (a) or (b) or (c) is hold, you do not have to compute all
candidate keys or superkeys in advance; just do some verification as needed.

However, this relation is not in BCNF , because in (3), D is not a superkey
of R (note that (1) and (2) do not violate BCNF requirement).

4.7.3 REMARKS ON NORMAL FORMS AND DENORMALIZATION

Note that the difference between BCNF and 3NF lies in condition (c) as
discussed in the previous section. Because of this difference, BCNF has more
restrictions than 3NF, and is thus considered as a normal form higher than
3NF. Note that the condition (c) allows the transitive dependencies (as shown
in BC → AD, D → B in the above example). The consequence of transitive
dependencies is that it may demonstrate some anomaly due to repetition.
However, an advantage of 3NF is that it is always possible to obtain a 3NF
design without sacrificing a lossless join or dependency preservation (as to be
discussed in the next section).

Various normal forms have been developed, both for theoretical studies and
different practical needs of relational database design. At the lowest end of the
normal form hierarchy is first normal form (1NF), which requires that all
attributes have atomic domains. A domain is atomic if elements of the domain
are considered to be indivisible units. Intuitively, 1NF just requires a relation
be a flat table. For example, a relation with schema (S_name, Course-taking)
containing a tuple "(john, {CS1, CS2})" is not flat, because the value in
"course-taking" is a set, rather than an indivisible units. But this tuple can be
rewritten as two tuples (john, CS1) and (john, CS2), which satisfy the
requirement of 1NF. Although 1NF has been used as a very basic assumption
in the practice of relational databases, the concept of non-first normal form
(NFNF or NF2) has also drawn much attention since the mid-1980s, partly due
to its relationship with object-oriented databases. We will examine this issue
in Section 4.8.

A higher normal form is called second normal form (2NF). In order to
define what 2NF is, we need the definition of partial dependency. A functional
dependency α→β is called a partial dependency if there is a proper subset γ of
α such that γ → β. We say β is partially dependent on α. A relation schema R
is in 2NF if each attribute A in R meets on of the following criteria:

(a) It appears in a candidate key; or
(b) It is not partially dependent on a candidate key.

It can be shown that every 3NF is in 2NF. Unlike the cases of BCNF and 3NF
(which are practically used) and 1NF (which is a very basic requirement), for
a long time, 2NF was considered of historical interest, because historically,
3NF was developed from 2NF, and BCNF is a further enhancement of 3NF.
However, as we have seen in the last few sections, the modern definition of
3NF does not bother 2NF at all. Nevertheless, recently 2NF has received
renewed attention, particularly due to the consideration of denormlization
process involved in data warehouses. In fact, we may deliberately introduce
some redundancy if we denormalize 3NF into 2NF. A more detailed
discussion can be found in Chapter 11.

4.7.4 DESIRABLE FEATURES FOR DECOMPOSITION --
"GLOBAL" DESIGN CRITERIA

Normalization as discussed so far is concerned with the quality of each
individual relation. It is important to keep in mind that an overall quality of
the decomposed relations is equally important, because the "whole" is not a
simple additive combination of the individual "parts," and a good relational
database design is not just a collection of good relations. In fact, even when
each relation may have good quality, anomalies may still occur at the global
level. In this section we discuss several important "global" design criteria.

4.7.4.1 Lossless-join decomposition
In order to understand the important concern behind the need for lossless

join, let us consider the relation R shown in Table 4.7(a).

Table 4.7(a) A relation
A B C
a1
a2
a3

b1
b1
b2

c1
c2
c3

Consider the decomposition as shown in Table 4.7 (b) and (c).

Table 4.7(b) R1 Table 4.7(c) R2
A B B C
a1
a2
a3

b1
b1
b2

b1
b1
b2

c1
c2
c3

 Now consider R' = R1 R2. The result is shown in Table 4.5(d).

Table 4.7(d) Result of join (Note: * indicates an additional tuple not in R)
A B C Remark
a1
a1
a2
a2
a3

b1
b1
b1
b1
b2

c1
c2
c1
c2
c3

*
*

Here is a remark on the meaning of lossless : Note that the more constraints
(requirements) in the query, the fewer tuples in the relation. Therefore,
"additional tuples" in the resulting join means "less constraints" which implies
"some information has lost" or "lossy." Consequently, "lossless-join"
decomposition means when the decomposed smaller relations joined back,
there are no additional tuples.

Note that if ri (i = 1, 2, …n) is a relation decomposed from R, then we
always have R ⊆ r1 r2 … r rn.

The following requirements for lossless join can be used to check whether
the lossless join condition is hold: Lossless join requires at least one of the
following is true:

R1 ∩ R2 → R1

R1 ∩ R2 → R2

Here the intersection ∩ means intersection of attributes; the above actually
says the intersection should be at least a superkey of R1 or R2. Back to the
previous example: R1 ∩ R2 = AB ∩ BC = B, but none of the following is true:
B → A or B → C.

Note that this requirement can be used to test lossless join when a relation is
decomposed into two relations only. In case we have more than two relations,
we have to repeat this algorithm several times. Alternatively, we may use an
algorithm for testing the lossless join property as introduced in [Elmasri and
Nevathe 1994].

4.7.4.2 Dependency preservation
Recall that functional dependencies may cross relation borders (that is,

functional dependencies belong to the whole database). Consider the example
R=(ABC) with F: {A → B, B → C}. Suppose we decompose R into:

 R1(AC) with F1: {A → C}

and
 R2(AC) with F2: {B → C}

From F1 and F2 we get F' = {A → C, B → C} and there is no way to derive A
→ B. So this example does not preserve dependency.

Both lossless-join and dependency preservation are important in
decomposition. However, sometimes we cannot satisfy both. In this case, we
usually sacrifice dependency preservation (because lossless-join is more
important).

4.7.5 DECOMPOSITION ALGORITHMS

Combining the individual and global design criteria, we introduce the
following important decomposition algorithms for relational database design.

Algorithm 1: Lossless-join decomposition into BCNF
 The key idea of this algorithm can be stated in the following informal way:

 __
While some functional dependency in relation R violates BCNF requirement

• form a new relation Ri consisting of the LHS and RHS attributes of
this functional dependency.

• remove RHS of this functional dependency from R.
The collection of Ris and the final relation containing the remaining attributes

Of R form a lossless join decomposition of the original relation R.

Note that the algorithm presented in many DBMS textbooks requires us to
compute F+. In fact, what important is to determine what functional
dependency is not in F+. Note also if we say a functional dependency is not in
F+, it actually means it violates BCNF. Note also that this algorithm is not
necessarily dependency preserving. This algorithm can be carried out using a
binary "decomposition tree" format, as illustrated in the example shown in
Figure 4.1. In this example, we have relation schema R = (ABCDEG) with F =
{A→BC, E→AG}. We can find the only candidate key is DE (please verify).
Each non-leaf node in this binary tree indicates a decomposition (due to the
violation of BCNF). The left branch of the binary tree indicates a new relation
constructed according to the requirement of BCNF while the right branch
indicates the remaining attributes in the original relation. The result of this
process consists of three relations R1, R3 and R4.

Figure 4.1 A decomposition tree

 A→BC removing BC from R

 violates BCNF

 E →AG removing AG
 Violates BCNF from R2

R=(ABCDEG)
Key: DE
fds: {A→BC, E→AG}

R1 = (ABC)
Key: A
fds: A→BC

R2 = (ADEG)
Key: DE
fds: E→AG

R3 = (AEG)
Key: E
fds: E →AG

R4 = (DE)
Key: DE
fds: trivial only

 Algorithm 2: Dependency-preserving, lossless-join decomposition into 3NF
Note that this algorithm starts from functional dependencies in canonical

cover to guarantee dependency preservation. An informal presentation of the
key idea is given below (not all details):

Algorithm
__
For each functional dependency in canonical cover

form a new relation;
If none of these formed relations contain any candidate key of the original

relation, form a relation consisting of attributes in a candidate key;
 The collection of the relations form a dependency-preserving, lossless-join

decomposition.
__

As a simple example, consider R=(ABCD) with F: {A → B, B → C}. This
relation is not in 3NF (Why?). To apply the above algorithm, notice
apparently Fc = F. We construct two relations R1=(AB) and R2=(BC).
However, none of them contains a candidate key. So we form another relation
R3=(AD), which contains a candidate key AD. R1, R2 and R3 together is the
set of decomposed relations.

4.8 MULTIVALUED DEPENDENCIES

4.8.1 VARIOUS FORMS OF DEPENDENCIES

Functional dependencies are an important form of integrity constraints.
However, other forms of dependencies also exist and may play an important
role in good relational database design. In this section, we discuss a type of
dependency called multivalued dependency. Other dependencies also exist.
For example, multivalued dependencies can be further generalized into join
dependency, which is said to hold over a relation R if R is decomposed into a
set of relations R1, R2, …, Rn, which forms a lossless-join decomposition of
R. Another example is inclusion dependency, which is a statement of the form
that some columns of a relation are contained in other columns (usually of
another relation). A foreign key constraint is an example of an inclusion
dependency, because the referring columns in one relation must be contained
in the primary key columns of the referenced relation. Since join dependencies
and inclusion dependencies are not very influential in database design, we will
not discuss them any more. Interested readers are referred to [Ramakrishnam
1998] for a little more detailed discussion. In the following we will briefly
discuss multivalued dependencies.

4.8.2 MULTIVALUED DEPENDENCIES

4.8.2.1 Comparison between FD and MVD
Multivalued dependencies (MVDs) can be considered as a generalization of

functional dependencies (FDs). We can introduce MVD by comparing it with
FD:
• For functional dependency α→β: α's value uniquely determines β's value;

other attributes are not affected in any way.
• For multivalued dependency α→→β: α's value does not uniquely

determine β's value, but α and β form a constraint for other attributes in
the relation (let us call these attributes "the third part"). This constraint
can be stated as "the relationship between α and β is independent of the
relationship between α and R - α - β."

FDs are usually referred to equality-generating dependencies while MVDs
are referred to as tuple-generating dependencies, because it requires
generation of new tuples if the required property does not hold. The
requirement is shown in the formula of the formal definition. In this
definition, four tuples are needed; all have same value on α but different on

ti[β].

Formal definition of Multivalued dependency (Md) α→→β if and only if
we have four tuples which satisfy

t1[α] = t2[α] = t3[α] = t4[α],

t3[β] = t1[β]

t3[R - α - β] = t2[R - α - β]

t4[β] = t2[β]

t4[R - α - β] = t1[R - α - β].

Note that attributes in the relation schema fall in three parts: α, β, and γ = R
- α - β (all of other attributes). Intuitively, these conditions indicate that for
the same left-hand side α of an MVD, if we have two different values at the
right-hand side β in two tuples, then we should be able to find two other
tuples, with their γ values swapped. Note that FDs can be considered as a
special case of MVDs, because the right-hand side value is unique, the four
required tuples are reduced to one.

We also need the concept of trivial MVD: for α→→β, either we have β ⊆ α
or α ∪ β. In other words, the third part is empty; this can be compared with
the concept of trivial FD.

4.8.2.2 Important properties
An interesting and important property for MVD is that in the three parts, the

second part β and the third part γ are "symmetrical" (this is actually
complementation rule as to be discussed soon):

 If α→→β, and if R ≠ α ∪ β, then α→→γ.

Note that now a set of dependencies may include both FDs and MVDs, and
will be denoted by D (instead of F). Similarly, we have D+ (instead of F+).
We also have the remarks on primary keys and candidate keys: they are still
determined by functional dependencies only. For superkey, the definition
stays the same. In other words, MVDs do not contribute to the concept of
keys.

As an example, consider the Easter gifts given to children by their mothers,
as shown in the relation Gift = (MCRGP) in Table 4.8 (a).

Table 4.8(a) An example for multivalued dependency
M(Mother) C(Child) R(Relationship) G(Gift) P(Price)

Jo Ann
Mary
Mary

David
Kim
Tom

son
daughter
son

PC
car
teddy-bear

 1000
10000
 20

You may think that Mary is unfair with her children, because price values
of gifts differ so much. (Jo Ann has only one child, David, so there is no
problem.) To be a good mother, Mary should give her son a car and her
daughter a teddy bear as well (that is, the previous table should add two rows).
This is shown in Table 4.8(b). This example shows why MVDs are called
tuple-generating.

Table 4.8(b) An example for multivalued dependency (cont.)
M(Mother) C(Child) R(Relationship) G(Gift) P(Price)

Jo Ann
Mary
Mary
Mary
Mary

David
Kim
Kim
Tom
Tom

son
daughter
daughter
son
son

PC
Car
teddy-bear
teddy-bear
car

 1000
10000
 20
 20
 10000

The second table satisfies MVD: M→→CR. Note we also have M →→ GP.
As a final remark, we point out that Armstrong's axioms can be extended to

MVDs, but they are much more complicated, and the detail is not discussed
here.

4.8.3 FOURTH NORMAL FORM (4NF)

We should notice that normal form higher than BCNF is needed, because
anomalies may still exist even in BCNF (note the relation schema does not
have any nontrivial FDs). Fourth normal form (4NF) is such a normal form,
which can be defined in terms of FDs and MVDs.

4.8.3.1 Definition of 4NF
A relation schema R is in 4NF with respect to a set D of FDs and MVDs if,

for all MVDs in D+ of the form α→→β where α ⊆ R and β ⊆ R, at least one
of the following holds:

(a) α→→β is a trivial MVD;

 (b) α is a superkey for schema R.

Note that if a relation schema is in 4NF then it is also in BCNF. This is
because if a schema R is not in BCNF, then it cannot be in 4NF. Finally, just
like the case of BCNF, a database design is in 4NF if all relation schemas are
in 4NF.

4.8.3.2 Decomposition into 4NF
The algorithm for lossless-join decomposition to 4NF is similar to BCNF

decomposition. In this process we check some α→→β violating 4NF instead
of checking some α→β violating BCNF.

As an example, the Relation(MCRGP) in the above example is not in 4NF
(Why?). We can decompose it to two relations MCR (containing information
about mother and children) and MGP (containing information about mother
and gifts available). (What are the tuples in these two tables?) Each small
relation has trivial MVDs only, so is in 4NF. (What is the primary key for
MGP?)

4.9 REMARK ON OBJECT-ORIENTED LOGICAL DATA
MODELING

Recently object-oriented data modeling approaches have received much
attention. The object-oriented data modeling techniques can be considered as
out-grown from Non-First Normal Form (sometimes denoted as NF2). Let us
re-consider the example presented in the last section. Instead of decomposing
the relation into smaller relations in 4NF, we follow the opposite direction by
grouping atomic values into sets. This consideration results in Table 4.9.

The NF2 representation serves as a model which is semantically clearer than
the one in 1NF, because the related information is grouped together. For
example, Table 4.10 clearly indicates Mary has two kids, one is Kim, another
is Tom, and each kid has a gift Car priced 10000 and a teddy bear priced 20.
In other words, each kid can be viewed as a nested relation contained in the
mother. In fact, we can view "mother" as a structured (or complex) data type
suitable for object-oriented data modeling. Extensions to SQL have been
developed to allow complex types, including nested relations, as well as
object-oriented features. Some aspects of object-oriented data modeling will
be briefly addressed in Chapter 6.

Table 4.9 Example to illustrate NF2

M(Mother) C(Child) R(Relationship) G(Gift) P(Price)

Jo Ann
Mary

David
Kim

Tom

son
daughter

son

PC
car
teddy-bear

teddy-bear
car

 1000
10000
 20

 20
 10000

4.10 BASICS OF DEDUCTIVE DATABASES

4.10.1 LIMITATION OF RA AND SQL

In the last section we mentioned the need for extending SQL. In fact, there
are other limitations which makes various extensions desirable. One
particularly important feature is lack of recursion in both relational algebra
and SQL. In fact, lack of recursion is an important reason why embedded SQL
is needed.

Consider retrieval of all ancestors for John in the following ancestor
relation. (Table 4.10) You cannot do it in RA or SQL. Using formal languages
extended from RA or using embedded SQL, you can consider use of a loop (or
recursion) to handle this.

Table 4.10 Parent relation
Child Parent
Tom
Mary
Dave
Tim

Mary
Tim
Tim
Bob

In the rest of this section, we briefly examine the issue of deductive
databases. Particularly, we use Datalog to illustrate how relational algebra can
be extended.

4.10.2 BASICS OF DATALOG

4.10.2.1 EDB and IDB
A database is a model of some set of integrity constraints, and a query is

some formula to be evaluated with respect to this model [Reiter 1984]. From
the viewpoint of logic, a DBMS can be seen as a query answering system that
views facts (tuples) as axioms of a theorem and queries as the conclusion of a
theorem. The inference mechanism provided with logic can be used to deduce
the query on the basis of the set of facts and rules. In addition, logic can be
used as a uniform language for expressing facts, rules, programs, queries,
views, and integrity constraints.

Datalog is the simplest model of deductive databases, which are databases
with inference power. Datalog is a version (or variation, not really subset) of
Prolog (as discussed in Chapter 3) suitable for database systems. A Datalog
program consists of two parts: an extensional database and an intensional
database, as discussed below.
• Extensional database (or EDB): This part contains the actual instances in

a conventional relational database. It consists of predicates whose
relations (instances) are stored in the database; it consists of facts (tuples).

As we have already learned in Chapter 4, the following predicates usually
are expressed in a table, but can also be expressed using predicates:

parent (john, tom).

parent (tom, mary).
parent (mary, bob).
parent (ron, john).
parent (ann, john).

• Intensional database (or IDB): This part contains rules involving
predicates (namely, relations). They are defined by logical rules; they are
actually views.

The following is an example of IDB:
ancestor (X, Y) :- parent (X, Y).
ancestor (X, Y) :- parent (X, Z), ancestor (Z,
Y).

Note that the same predicate may be associated with both EDB and IDB.
For example, we can define "grandfather" as:

Grandfather(tom,john). %This is part of EDB
Grandfather(X,Y) :- father(X,Z), father(Z,Y).

%This is part of IDB

4.10.2.2 Recursion
Note that the definition of intensional database can use recursion; for

example, predicate "ancestor" in both head and body of the same rule. This is
a very important property of using intensional databases.

Before we go on, let us briefly summarize what we have achieved so far.
The use of IDB makes recursion be introduced in a database program. Also
please note that in our discussion we did not mention negation (namely, we
did not consider to negate a predicate) -- in fact, at this point we have not
included negation in our simple Datalog model. The relationship among RA,
RC and the simplest Datalog model can be described as following:

A query can be converted from RA to nonrecursive Datalog;
• A query can be converted from safe, nonrecursive Datalog possibly with

negated subgoals to RA;
• A query can be converted from safe DRC to safe nonrecursive Datalog;
• A query can be converted from RA to safe nonrecursive Datalog to safe

DRC.
Therefore, we have established the equivalence of the following: RA; safe,

nonrecursive datalog programs with negation; safe DRC; safe TRC. In
summary, we have the following two formulae:

(Safe) Datalog = RA + recursion - negation
RA = (Safe) Datalog - recursion + negation

These two formulae indicate what is lacking from the basic version of Datalog
is negation. In the following, we take a look at this issue.

4.10.2.3 Recursive queries with negation in rule body: Using
stratification

Negation can be added into Datalog by introducing new concepts related to
stratification. A stratified program is a program whose tables can be classified

into strata. A stratified program is evaluated stratum by stratum, starting with
stratum 0.

In order to explain the basic idea of handling recursive queries with
negation in rule body, we informally introduce some terminology. We use the
term strata to denote layers in a Datalog program. The intuition is to process
the Datalog program in a stratum-by-stragum fashion. Furthermore, we can
define stratified rules: rules are stratified if whenever there is a rule with head
predicate p and a negated subgoal with predicate q, there is no path from p to
q (namely, p does not depend on q, directly or indirectly).

A simple example of stratified program is taken from [Ullman 1989]. This
program is recursive, because of (2) (although it actually does nothing).

(1) p(X) :- r(X).
 (2) p(X) :- p(X).

(3) q(X) :- s(X), not p(X).
In this program, p depends on r, which does not involve negation. Q

depends on s and p, but the calculation of p is already done. (q is at a higher
stratum than p.) We can use dependency graph to depict how the predicates
are depending on each other, as shown in Figure 4.2. Note that in a
dependency graph, nodes are predicates. Arcs in the dependence graph
indicate how predicates depend on each other: There is an arc from predicate p
to predicate q if there is a rule with a subgoal whose predicate is p and with a
head whose predicate is q. Using dependency graph, we can easily check a
recursive program: A program is recursive if its dependency graph has one or
more cycles. There are three nodes in Figure 4.2, p, q, and r. There is an edge
from r to p, due to rule (1). There is also an edge from p to q, due to rule (3).
Due to rule (2), there is a cycle local to node p, which indicates the Datalog
program is recursive. The good news is that, however, although q depends on
p (in rule 3, where p is negated), p does not depend on q. If the calculation of
p involves q, we will be in trouble.

Figure 4.2 A dependency graph

Stratification has an important role in deductive database reasoning. Recall
that we have the following relationships:

(safe) Datalog = RA + recursion - negation
RA = (safe) Datalog - recursion + negation.

 Stratified Datalog with negation subsumes both Datalog and RA, and thus
plays an important role in deductive databases. An in-depth discussion of
Stratified Datalog can be found in [Ullman, 1989].

 (2) p
 A
 (3)
 (1)
 q r

4.10.3 DEDUCTIVE QUERY EVALUATION

We now briefly discuss how to evaluate (or process) a deductive query
(namely, how to get answer(s)). One important concern here is how these
methods apply to recursive queries.

4.10.3.1 Bottom-up versus top-down
Top-down (query-driven, similar to Prolog): It starts from query, finds the

head of a rule to match, then propagates the variable binding from head to
body (from the first subgoal to the last subgoal). The problem of determining
precisely the relevant facts is difficult to solve. "Pure" top-down processing
for recursive queries has intrinsic problems, and is avoided entirely.

Bottom-up (data-driven): It starts from using facts, but does not consider
the query (facts used may not be useful to answer a query at all). Note rules
are used in this manner: first, values of the variables are determined to satisfy
the body (RHS), then the variable bindings are propagated to the head (LHS).
We can use a bottom-up proof procedure for computing consequences of KB
until the result does not change. The final C generated in the algorithm is
called a fixed point because any further application of the rule of derivation
will not change C. So the fixed point is actually the solution of the given
problem. A fixed point of the Datalog equations (with respect to EDB R1,
…Rk) is a solution for the relations corresponding to the IDB predicate to the
IDB predicates of these equations.

In the following, we introduce two bottom-up query processing methods,
using the following example. We assume that "parent(X, Y)" is in EDB.

ancestor(X,Y):- parent(X,Y).
ancestor(X,Y):- parent(X,Z), ancestor(Z,Y).

Query: ancestor(X, tom). (Namely, find all of Tom's ancestors.)
• Naive method: It can be performed using RA. The problem of this method

is that it does redundant, useless work, because it does not take advantage
of the actual query: it generates all the facts that can be derived, then
selects those related to the query. As an example, we use naïve method
for finding Tom's ancestors ("=" denotes assignment):

ancestor = ∅; %initialization
While ancestor changes do
 ancestor = ancestor ∪ parent |×| ancestor
 %calculating ancestor for all persons
select ancestors with "Tom" as a descendent

• Semi-naive method: It applies rules to new tuples produced at the
previous step only. That is, it focuses on the change. In this sense, it uses
an "incremental" method for query processing. As an example, we use
semi-naïve method for finding Tom's ancestors ("=" denotes assignment,
∆ stands for change, and denotes the join operator defined earlier in
this chapter):

∆ ancestor = parent;
ancestor = ∆ancestor;
While ∆ancestor changes do
 ∆ancestor = parent ∆ancestor;

 %calculating changes of ancestors;
 %note that the naïve method does not record
 the actual change of ancestors.

select ancestors with "Tom" as a descendent

4.10.3.2 Magic sets approach for recursive query processing
The discussion made in this section so far can be summarized as follows.

Top-down approach has the advantage of being efficient (because it is query-
driven) but is not a realistic method to use, while bottom-up approaches (even
semi-naive approach) are not efficient. In fact, in the above example, although
the query is only concerned with John's ancestor, this fact is not considered
until the last step. To overcome the problems of existing methods, magic sets
approach employs a rule-rewriting technique so that bottom-up processing is
combined with a top-down flavor. The purpose is to discard irrelevant tuples
early in the bottom-up query processing. How to tell the query processing
system which information is relevant and which is not? The trick is to use the
given (known) portion of the query to form a "pseudo-fact" (the "magic"
thing!) so that bottom-up processing can take advantage of top-down
processing (while avoid the troubles of using "pure" top-down processing). It
is still bottom-up processing but only searches for paths related to query.
From the perspective of relational algebra, this can be considered as pushing
selection to avoid irrelevant inferences.

The magic set rule-writing algorithm given by [Ullman 1989] (Section 13.1
in Volume II) describes detailed steps of rewriting. The result has five groups
of rules. The following is revised from an example discussed there:

r1: same_gen(X,X) :- person(X).
r2: same_gen(X,Y) :-
 parent(X,Xp), same_gen(Xp, Yp), parent(Y,Yp).

Note that "same_gen" is a recursive predicate, and the program is thus a
recursive one. The first rule says a person is always at the same generation of
himself (or herself). This is the base case of the recursive. The second rule
says X and Y are the same generation if their parents are at the same
generation. This is the general case of the recursion.

Note that only the IDB part and the query are shown there; EDB facts
(tables) such as person or parent are not shown. Here we will not discuss
how to rewrite the rules; we will only explain how this new (namely, re-
written) program will be processed to answer the query. The query is
"same_gen(john, W)", namely, find W (the second argument which is a
variable) who is in the same generation with person "john" The magic sets
approach requires to construct (from the query) a magic predicate "m-
same_gen(john)" as shown in Group V in the algorithm, which indicates that

what is to be retrieved should be associated with that particular individual
"john" only. This magic predicate is treated as a fact for further processing; in
this sense, the magic sets approach uses bottom-up. Take a look at the
attachment (with the instructor's remark in handwriting). The purpose of this
algorithm is to convert the original program so that the re-written program can
be processed in the manner as described here. Magic sets approach has been
used for maintaining materialized views and query optimization (e.g. [Staudt
and Jarke 1996, Harinarayan, 1997]).

4.11 KNOWLEDGE REPRESENTATION MEETS
DATABASES

In this last section of Chapter 4, we examine the issue of combining
requirements of knowledge bases and databases. This discussion takes a logic-
based perspective. A continued discussion on combining knowledge bases and
databases will be continued in the next chapter (as well as in the remaining
part of this book), where more pragmatic concerns will be addressed. The
focus of our discussion is on intelligent access to heterogeneous information
sources. According to [Baader, Jeusfeld and Nutt 1997, Borgida, Chaudhri
and Staudt 1998], researchers seeking logic-based approaches have studied
using Datalog (or another languague called DL) to achieve integration
between computational intelligence and DBMS. Although their approaches
are logic-based, the discussion may shed significant insight on the nature of
this kind of integration. Both databases and knowledge bases are used to
represent the relevant parts of an application domain, and to allow convenient
access to the stored information. Research in KR originally concentrated on
expressive formalisms with sophisticated reasoning services, usually under the
assumption that the size of the knowledge base (KB) is relatively small and
resides in main memory. In contrast, DB research was concerned with
efficiently storing, retrieving, and sharing large amounts of simple data
(usually in secondary memory), but the languages for describing schema
information were rather simple, and reasoning about the schema played only a
minor role. This difference reminds us the importance of dealing with scaling
up problems (which was briefly discussed in Chapter 2). However, the
distinction between the requirements and problems in KB and DB are
vanishing rapidly. This is because a modern KR system must be able to handle
large data values if it is to be employed in realistic applications. This means
that techniques developed in the DB area can and should be incorporated. The
boundary between KB and DB is diminishing, also because the information
stored in DBs is becoming more complex and comes from heterogeneous
sources, thus requiring more intelligent construction and retrieval techniques,
especially the use of meta-data, which is really knowledge about data. (For a
discussion on meta-data, see Chapter 14.) In principle, as long as descriptions
of database schemas are expressed as formal concept definitions in a suitable
description logic, a computational intelligence tool can reason about them to

detect inconsistent descriptions and containment of these schemas. Note that
the reasoning is done independently of the specific content of a database.
Research work has been carried out to implement KR systems on the top of
relational databases or the access to a database through a KR system.
Techniques to be introduced in Chapter 5 and Chapter 6 will make important
contribution to this integration.

SUMMARY

In this chapter we have extended our discussion of predicates to relations.
We discussed relational algebra and relational calculus. Logically, relational
databases are just predicates; however, the practical issues considered in
DBMS make them deserve special treatment.

We have also discussed relational database design. The basic normal forms
(based on functional dependencies and multivalued dependencies) discussed
in this chapter can be summarized as follows:

4NF ⊂ BCNF ⊂ 3NF ⊂ 2NF ⊂ 1NF

Decomposition algorithms to these normal forms were also introduced.
More details on the relational databases, as well as many other basic issues
related to database management systems can be found in [Silberschatz, Korth
and Sudarshan 1987, Ramakrishnan 1998].

Note that the relational database design theory has a very close relationship
with logic-based reasoning. A volume consisting of historically important
discussion on deductive databases can be found in [Minker 1987]. The
integration between Prolog and DBMS, which was an enthusiastic topic in the
1980’s, has been considered as dead. However, this does not indicate that
integration itself is a bad idea. The key point here is how to integrate them.
Datalog is a useful language for this kind of integration. In this chapter we
briefly introduced magic set method for efficient deductive query processing.
Other methods also exist. For example, [Lee and Leung 1993] introduced a
query-processing method using V graph and SARP techniques. It is based on
the analysis of a recursive rule's structure that cuts through the complexity
often associated with queries in deductive databases.

Another important development in integrated database design is concerned
with combining deductive databases techniques with object-oriented
databases, sometimes under the title of deductive object-oriented databases
(DOOD). Some basic issues related to deductive and object-oriented bases are
discussed in [Gardarin and Valduriez 1989]. A collection of recent papers
along with this research direction can be found in [Bry, Ramakrishnan and
Ramamohanarao 1997]. A recent survey on deductive database languages
(including different Datalog extensions LDL, COL, Hilog and Relationlog) as
well object-oriented deductive languages (including O-logic, F-logic, ROL
and IQL), can be found in [Liu 1999].

SELF-EXAMINATION QUESTIONS

1 . Explain the meaning of safety in relational calculus. Why don't we
discuss safety in RA?

2. What is the meaning of the following query in RA? How to re-write it
using RC (you don't have to worry about the exact syntax).

σA1= 'a'(r) × πA2(s)

3. Verify FDs as a special case of MVDs. Consider R(ABC), with F: {A →
B}. Use two tuples (a1, b1, c1) and (a1, b1, c2) and restate in terms of
MVD.

4 . Consider Table 4.11. Does the following MVD hold in R(ABCDE):
C→→BE? If not, add the smallest number of tuples to make the MVD

hold.

Table 4.11 Another example of MVD

A B C D E
a1
a2
a1
a2
a3
a4
a4
a3

b1
b2
b2
b1
b3
b4
b3
b4

c1
c1
c1
c1
c2
c2
c2
c2

d1
d2
d1
d2
d3
d4
d4
d3

e1
e1
e1
e1
e2
e3
e2
e3

REFERENCES

Baader, F., Jeusfeld, M. A. and Nutt, W., Intelligent access to
heterogeneous information sources: Report on the 4th workshop on knowledge
representation meets databases, SIGMOD Record, 26(4), 44-48, 1997.
Borgida, A., Chaudhri, V. K., and Staudt, M., Report on the 5th workshop
on knowledge representation meets databases (KRDB'98), SIGMOD Record,
27(3), 10-15, 1998.
Bry, F., Ramakrishnan, R. and Ramamohanarao, K. (eds.), Proceedings of
1997 Deductive and Object-Oriented Databases Conference (DOOD '97),
Springer, Berlin, 1997.
Elmasri R. and Navathe, S. B., Fundamentals of Database Systems (2nd ed.),
Benjamin Cummings, Redwood City, CA, 1994.
Gardarin G., and Valduriez, P., Relational Databases and Knowledge
Bases, Addison Wesley, Reading, MA, 1989.
Lee, D.L. and Leung, Y. Y., Fast Query processing in Deductive Databases.
IEEE software, 10(6), 66-74, 1993.

Liu M., Deductive database languages: Problems and solutions, ACM
Computing Surveys, 31(1), 27-62, 1999.
Minker, J. (ed.), Foundations of Deductive Databases and Logic
Programming, Morgan Kaufmann, Los Altos, CA, 1987.
Ramakrishnan, R., Database Management Systems, McGraw-Hill, Boston,
1998.
Reiter, R. Toward a logical reconstruction of relational database theory. In
On Conceptual Modelling (Brodie, M. L., Mylopoulos, J., and Schmit, J. W.,
eds.), Springer-Verlag, New York, 191-238, 1984.
Silberschatz, A., Korth, H. and Sudarshan, S.,, Database System Concepts
(3rd ed.), McGraw-Hill, New York, 1997.
Staudt, M. and Jarke, M., Incremental maintenance of externally
materialized views, Proceedings of Very Large Data Bases .(VLDB'96), pp.
75-86, 1996.
Ullman, J. D., Principles of Database and Knowledge Based Systems,
(Volumes I and II), Computer Science Press, Rockville, MD, 1989.

Chapter 5

RETRIEVAL SYSTEMS

5.1 OVERVIEW

Logic-based representation as discussed in Chapter 3 (as well as an
extended discussion provided in Chapter 4) paves the way for presenting
several kinds of retrieval systems. In this chapter, three kinds of retrieval
systems will be examined: we start with data retrieval in database
management systems, and extend our discussion to information retrieval and
knowledge retrieval. The emphasis of this chapter is on actual systems which
are useful in intelligent decision support. For database retrieval, we discuss
basics of database management systems. For information retrieval, we discuss
how it differs from database retrieval, some important concepts in information
retrieval, as well as the role of the World-Wide Web in building data
warehouses, which serve as a low-key solution to get around the problems
encountered in distributed database systems. Finally, for knowledge retrieval,
we present the concept of expert system as a deductive retrieval systems, and
introduce recent development in knowledge management.

An agent-based retrieval system is able to perform interoperation among
these different types of retrieval. We should note that retrieval data and
knowledge are very different tasks, but they also share some common
concerns. A good understanding of their similarities and differences will
enhance the chance of integration of information systems. The similarities and
differences have significant impact on decision making. For example, a very
important problem in both database and knowledge reasoning systems is
concerned with the size of the data or knowledge. On the one hand, for
database management systems, due to the huge amount of data residing on the
secondary memory, performance analysis has traditionally been a focal issue.
On the other hand, for computational intelligence, the emphasis of the study
has been on the development of algorithms dealing with knowledge residing
in main memory. How to scale up these algorithms to satisfy the environment
consisting of a huge amount of data poses a big challenge to computational
intelligence.

Since in the previous chapter we discussed relational databases, in this
chapter we start our discussion on retrieval systems from database
management systems.

5.2 DATABASE MANAGEMENT SYSTEMS (DBMS)

5.2.1 BASICS OF DATABASE MANAGEMENT SYSTEMS

A database-management system (DBMS) consists of a collection of
interrelated data and a set of programs to access those data. The collection of
data (the database) contains information about one particular enterprise. The
primary goal of a DBMS is to provide an environment that is both convenient
and efficient to use in retrieving and storing database information.
Applications of DBMS include banking systems, airport reservation systems,
etc. Functions supported by a DBMS include retrieval, update, as well as
others.

There are actors on the scene, including Database administrators (who are
responsible for authorizing access to the database, coordinating and
monitoring its use, and for acquiring software and hardware resources as
needed), Database designers (who are responsible for identifying the data to
be stored in the database and choosing appropriate structures to represent and
store this data), End users (including casual end users, naive users,
sophisticated end users (engineers, scientists, business analysts, etc.) and
stand-alone users), system analysts (who determine the requirements of end
users, and develop specifications to meet these requirements) and application
programmers (who implement specification as programs, involving testing,
debugging, documenting and maintenance). There are also actors behind the
scene, including DBMS designers and implementers, tool developers and
operators and maintenance personnel.

5.2.2 THREE LEVELS OF DATA ABSTRACTION

A major purpose of a database system is to provide users with an abstract
view of data. The three levels of data abstraction (three-layer architecture) are
depicted in Figure 5.1.

 Figure 5.1 Three layer architecture of DBMS

View 1 View 2 View n

Logical Level

Physical level

The architecture shown in Figure 5.1 is usually referred to as the 3-layer
architecture. The three levels are:
• View level: It is the part of the entire database the user is interested in.

(Note that the concept of view in this context is more general than the
concept in relational databases.)

• Logical level: It is referred to what data are stored in the database, and
what relationships exist among those data.

• Physical level: It is concerned with how the data are actually stored.
From the 3-layer architecture we can distinguish the following two types of

data independence, thus benefiting the design of database management
systems.
• Physical data independence: The ability to modify the physical schema

without causing application programs to be rewritten.
• Logical data independence: The ability to modify the logical schema

without causing application programs to be rewritten.

5.2.3 SCHEMA VERSUS INSTANCES

When relational data model was discussed in Chapter 4, we had already
introduced concepts such as schema and instances. In the following, we re-
define them in a larger scope.

Database schema refers to the overall design of the database. It is changed
infrequently. Database schema may exist at different levels.
• Physical schema. There is only one such schema.
• Logical schema. There is only one such schema.
• Subschemas at the view level. There may be multiple number of

subschemas.
Database instances (also called as database states) refers to the contents

(values) of the database. They are changed more frequently in comparison
with the schema. Note a database instance (or database state) refers to all the
data stored in the database at a particular moment.

5.2.4 DATA MODELS

A data model is a collection of conceptual tools for describing data, data
relationships, data semantics, and consistency constraints. Various models
exist at different levels.
• Conceptual model: This is the highest level. A popular model at this level

is the Entity-relationship (ER) model (to be discussed in Chapter 6).
• Logic model: Conceptual model can be used for development data models

at the logic level. Relational data model as discussed in Chapter 4 is an
example of logical level abstraction. Other logical level abstractions also
exist, including those usually referred to as legacy systems, such as
network data model and hierarchy data model.

• Physical model. At the lowest level, physical implementations are
developed to realize the logic models.

5.2.5 DATABASE LANGUAGES

In general, two types of languages can be distinguished:
• Data-definition language (DDL): Language used to specify database

schema.
• Data-manipulation language (DML): A language that enables users to

access or manipulate data as organized by the appropriate data model.
Data manipulation refers to retrieval, insertion, deletion and modification
of information. We also have the following terminology:
♦ Query language: The portion of a DML that involves information

retrieval.

5.2.6 COMPONENTS OF DATABASE MANAGEMENT SYSTEMS

We now discuss the system architecture of DBMSs. A DBMS consists of
the following components:

• Users
• DBMS proper:

♦ Query processor
♦ Storage manager
� Transaction manager, etc.

• Disk storage (relationship with main memory)
The relationship among these components is shown in Figure 5.2 (following

presentations given in [Ullman and Widom 1997, Silberschatz, Korth and
Sudarshan 1996]). Related concepts, such as transaction processing and query
process will be briefly discussed in Section 5.5.

5.3 COMMERCIAL LANGUAGES FOR DATA
MANAGEMENT SYSTEMS

5.3.1 BASIC REMARKS ON COMMERCIAL LANGUAGES

Different from formal languages for relational data model (as discussed in
Chapter 4), commercial languages have added "syntactical sugar" (such as
ability to deal with string operations). In this section we provide a brief sketch
for a well-known commercial language SQL, which stands for Structured
query language. It can be considered as a realization of relational algebra, but
it also has some flavor of relational calculus. Various versions of SQL have
been developed, including SQL-89, SQL-92 (SQL 2), SQL 3 (proposal).
Various proposals for extension exist, such as to add temporal aspects. In
addition, some variations of SQL have been developed by various venders,
such as dynamic SQL. SQL can also be embedded in many other languages,
such as C++. In this section, we will only sketch some basic features of SQL.

Figure 5.2 DBMS system structure

5.3.2 BASIC STRUCTURE OF SQL QUERY

We can compare SQL clauses with RA operators, as shown below.

 SQL Clause Corresponding RA operator
Select A1, A2, … An

From r1, r2, …, rm

Where(optional) P

πA1, A2, …, An (NOT σ!)

r1 × r2 × … × rm

σP

The entire SQL statement "Select A1, A2, … A n From r 1, r2, …, rm

Where(optional) P" is equivalent to the following RA expression
πA1, A2, …, An (σP (r1 × r2 × … × rm))

Nested SQL queries are allowed. For example, any ri (i = 1, …,m) in the
abobe SQL query could be an SQL query as well.

5.3.3 EXAMPLES OF SQL QUERIES

Note that although RA provides a good theoretical foundation for SQL, the
connection between an RA query and an SQL query may not necessarily be
(or not always) a direct translation. Also note that in order to implement a
query in SQL, you may need to try more than one way.

 INTERFACE

Query processor
(evaluation/optimization)

Storage
manager

Data
(Disk storage)

Transaction
manager

Meta-
data/

indices

Consider a bank relational database with the following relations:
Own(customer-name, a-no):
 This relation stores customer name and account numbers for saving.
Borrow(customer-name, l-no):
 This relation stores customer name and loan numbers.

Now let us consider the query "find all customers who have both a loan and
an account at the bank." The following query A (which uses the "intersect"
operator) should do the work:
(A) (select distinct customer-name
 from Own)
 intersect
 (select distinct customer-name
 from borrow)
 The relational algebra query corresponding to this SQL query is

πcustomer-name (borrower) ∩ πcustomer-name (depositor)

However, the above query is not the only one we can write. The following
are some other answers. This is an indication of equivalence (redundancy) in
SQL, due to the rich structures provided in the language. The redundancy is
necessary, particularly due to the fact that not necessarily every feature of
SQL is actually supported by any commercial product.
(B) select distinct customer-name
 from borrow
 where customer-name in (select customer-name

 from own)
(C) select distinct customer-name
 from borrow
 where exists (select customer-name

from own
 where own.customer-name = borrow.customer-name)
(D) select distinct customer-name
 from borrow, owns
 where borrow.customer-name = own.customer-name

5.3.4 WRITING SIMPLE SQL QUERIES

Although writing an SQL query is not a translation from RA to SQL, to
form an SQL query takes similar consideration as to form a relational algebra
query from a given English query. The following is an informal description
for some considerations involved in simple SQL queries.
• From interested attributes identify relevant relations:

♦ study relation schema;
♦ given attributes, find relations, find other attributes in same relation;
♦ be aware that same attribute may appear in different relations or may

 have different names in different relations;

• specify attributes to be retrieved in the select clause (the π operator in

RA);
• specify all the relation names involved in the from clause (to form a

Cartesian product ×;

• specify conditions (e.g. r.A = s.B) used for join and select operations (in
RA) in the where clause;

• take advantage of "syntactic sugar" of SQL.

5.3.5 WORKING WITH SQL PROGRAMS: GENERAL STEPS

Writing SQL queries is only a portion of the larger task concerning an SQL
program. An SQL program consists of DDL and DML, including table
creation, insert statements, queries, and others (such as modification). In
general, working with SQL programs consists of the following steps. We use a
bank database for illustration purposes (the requirement for this database will
be described in Chapter 6).
1. Define schema for each relation using SQL DDL. For example, we can
create a relation account using SQL DDL:
 create table account

 (account_number char(10) not null,
 branch_name char(15),
 balance integer,
 primary key (account_number));

2. Populate the database by inserting tuples. The following is an example for
inserting tuples into the table defined above:
 insert into account values
 ('Aksarben', 'A-5215', 1600);
3. Write SQL queries. After the database has been populated, we can submit
SQL queries. We can type in all SQL queries in one file. Alternatively, we can
treat each query as a separate file. The general steps involved in writing SQL
queries are already discussed in the previous section.
4. Execute the queries. After the database schemas are created and the tables
are populated, you can execute queries. It is likely that you need revise your
file to correct any syntactic or semantic error.

5.3.6 REMARKS ON INTEGRITY CONSTRAINTS

ICs other than primary keys including the following in SQL, including use of
constraint (to specify the constraint to be satisfied), check (to check the
condition specified), as well as foreign key (to define the attribute-name used
as a foreign key). In addition, domain constraints can be defined, which are
similar to user-defined data types in many programming languages. The
following is an example of referential integrity in SQL-92:
 create table table-name
 (...
 primary key (...),

 foreign key (...) references relation-name,
 check (...));

5.3.7 AGGREGATE FUNCTIONS

Aggregate functions map a collection (i.e., a set or a multi-set) of values
into a single value. Aggregate functions are important because they allow us
to obtain important statistics of the data. Aggregation functions play an
important role in data analysis for decision support (more discussion can be
found in Chapter 11). A brief examination of SQL may help us to understand
basic concerns behind aggregation functions. SQL offers five built-in
aggregate functions:

• avg(X): average of X (X must be a collection of numbers);
• sum(X): sum of X (X must be a collection of numbers);
• max(X): maximum of X (X can be collections of nonnumeric data

types);
• min(X): minimum of X (X can be collections of nonnumeric data

types);
• count(X): count the total number (cardinality) of X (X can be

collections of nonnumeric data types).
In addition, in order to allow users to apply aggregation functions on a

group of set of tuples, SQL offers the "group by" clause. For example, in a
banking database, a user may submit a query using "group by" to find the
average account at each branch. Furthermore, condition itself may involve
aggregation. In this case, the "where" clause in SQL should be extended. This
results in a "having" clause in SQL. For the query, "find names and average
balance of the branches where the minimum account balance is more than
$500," we can write the following SQL query:

Select branch-name, avg(balance)
From account
Group by branch-name
Having min(balance) > 500

5.3.8 REMARKS ON ENHANCEMENT OF SQL
Finally, we give some advanced features or enhancement of SQL. One

feature is concerned with the following scenario: Applications from
spreadsheets or graphical front-end tools accept commands from users, and
based on the user needs generate appropriate SQL statements to retrieve the
necessary data. In these cases we are unable to predict in advance which SQL
statements should be executed. SQL provides commands such as prepare and
execute to deal with these problems. These commands are referred to as
dynamic SQL.

Another feature is an enhanced ability of aggregation. We just discussed the
basic structure of aggregation provided by SQL. This structure is not good
enough for the need of On-Line Transaction Processing (OLAP). In order to
deal with this problem, we consider the compute clause supported by Transact

SQL from Sybase. It is an important Transact-SQL extension that is used with
the row aggregate functions, sum, max, min, avg, and count, to calculate
summary values. The results of a query that includes a compute clause are
displayed with both detail and summary rows, and look like a report that most
DBMSs can produce only with a report generator. compute displays summary
values as additional rows in the results, instead of as new columns.

Transact-SQL has been designed to enhance the power of SQL and to
minimize the occasions on which users must resort to a programming
language to accomplish a desired task. Transact-SQL goes beyond both the
ANSI standard and the many commercial versions of SQL. Other features
supported by Transact SQL include control-of-flow language, stored
Procedures, triggers (a special kind of stored procedure that is used to protect
referential integrity-to enforce rules about the relationships among data in
different tables), rules and defaults, error handling and set options, as well as
others.

5.4 BASICS OF PHYSICAL DATABASE DESIGN

Although this book is not concerned with physical database design, a basic
understanding of physical database design is still needed (even for an end
user). It is important to keep in mind that searching and sorting methods in a
DBMS involves input/output operations with secondary memory.

5.4.1 STORAGE MEDIA

We first give some terminology related to the size of databases:
 1 MB (megabyte) = 106 bytes

1 GB (gigabyte) = 109 bytes
1 TB (terabyte) = 1012 bytes
1 PB (petabyte) = 1015 bytes

It is not uncommon for data warehouses to have size in hundreds of
terabytes.

Several types of data storage exist, for a hierarchy of storage devices. At
one end of this hierarchy is the fastest storage media called cache, and is
managed by the operating system. The storage medium used for data that can
be operated on is the main memory. The primary medium for the long-term
on-line storage of data, however, is the magnetic disk. Traditionally, the entire
database is typically stored on magnetic disk, although recently main-memory
databases have drawn more and more attention [Eich 1992]. The advent of
main-memory database has apparently enhanced the integration of
knowledge-based computational intelligence techniques with database
techniques. Note that disk storage is referred to as direct-access storage,
because it is possible to read data on disk in any order. Having a large number
of disks in a system can improve the rate at which data can be read or written,
and improve the reliability of data storage by storing redundant information on

multiple disks. For this reason, a variety of disk-organization techniques
referred to redundant arrays of independent disks (RAID) have now been
widely used. At the other end of the storage-device hierarchy is the tape
storage, which is considered as sequential-access storage. Tape storage is
slow to access, and used primarily for backup and archival data.

5.4.2 FILE STRUCTURES AND INDEXING

A database is mapped into a number of files, which are maintained by the
underlying operating system. These files reside permanently on disks (with
backups on tables). A file is organized logically as a sequence of records.
These records are mapped into disk blocks. Files are provided as a basic
construct in operating systems.

A search key is the attribute (or attributes) used to look up records in a file.
Note that it is different from key concepts (e.g., primary keys) in relational
database (which is at the logical level of DBMS).

A query may reference only a small proportion of the records in a file. To
reduce the overhead in searching for these records, we can construct indices
for the files on which the database is stored. There are many types of indices:

(a) Index-sequential files. They are one of the oldest index schemes used in
database systems and are designed for applications that require both sequential
processing of the file and the random access to individual records. To permit
fast retrieval of records in the order of the search key, records should be
chained together by pointers. To allow fast random access, an index structure
should be used. Indices could be either dense or sparse. In dense index, an
index record appears for every search-key value in the file; while in sparse
index, an index record is created for only some of the values.

In a standard index-sequential file, only one index is maintained. If several
indices on different search keys are used, the index whose search key specifies
the sequential order of the file is referred to as the primary index (also called
clustering index). The search key of a primary index is usually (but not
necessarily) the primary key. Each of the other indices is called a secondary
index (or non-clustering index). In other words, a secondary index is an index
whose search key specifies an order different from the sequential order of the
file (for example, records are ordered by SSN but searched by names).
Secondary indices improve the performance of queries that use search keys
other than the primary one. However, the price we have to pay is the overhead
when the database is modified. Note that regardless what kind of index is
used, the index-sequential file organization suffers from performance
degrading as the file grows.

(b) B+ tree or B tree index. They are designed to overcome the
performance degrading problem. A B+ tree is a balanced tree in which all the
leaves (which store the data or contain pointers to the data) are at the same
level. The branch factor is usually a relative large number (say, 27 = 128),
making only few disk accesses needed. Search operation can be carried out in
a straightforward manner. Insert and delete are somewhat complex, because

the balanced condition may be violated and need to be restored. B-tree index
is a variation of B+ tree where data may be stored in the internal nodes.

(c) Hash index. An alternative way of using index is instead of using
ordered indices (sorted ordering), we can use a hash function to find the
address of a data item directly by computing a function on the search-key
value of the desired record. Two kinds of hashing can be distinguished:
• Static hashing. It uses hash functions in which the set of bucket addresses

is fixed. These hash functions cannot easily accommodate databases that
grow significantly larger over time.

• Dynamic hashing. It allows the hash function to be modified. Different
dynamic hashing techniques have been developed. For example, in
extendable hashing, buckets used to store the data can be split when the
database grows, and can be coalesced when the database shrinks.

5.4.3 TUNING DATABASE SCHEMA

In Chapter 4, we discussed logical database design. The logical design
should be followed by the physical database design, where we design the
physical schema. It is important to keep in mind that as user requirements
evolve, it is usually necessary to tune, or adjust, all aspects of a database
design for good performance. There are three kinds of tuning [Ramakrishnan
1998]:
• tuning indexes: Based on the observed workload we may refine the initial

choice of indexes.
• tuning the conceptual schema: This is to make changes to the conceptual

schema in order to enhance performance.
• tuning queries: This is to rewrite frequently executed queries and

transactions in order to run them faster.

5.5 AN OVERVIEW OF QUERY PROCESSING AND
TRANSACTION PROCESSING

Although the main interest of computational intelligence for decision
support is not directly concerned with what is going on inside of the computer,
we still need a basic understanding about two very basic issues, namely, query
processing and transaction processing. In the following we give a brief remark
on this topic.

5.5.1 QUERY PROCESSING

Query processing refers to the range of activities involved in extracting data
from a database. It is concerned with choosing a strategy for processing a
query that minimize the amount of time that it takes to compute the answer.
Basic steps in traditional On-Line Transaction Processing (OLTP) consist of
the following:

(1) Parsing and translation: This is to translate SQL queries into
system's internal representation (using extended relational algebra);
(2) Query optimization: This refers to the process of selecting the
most query-evaluation plan for a query. A query evaluation plan is a
sequence of primitive operations that can be used to evaluate a query.
(3) Query evaluation: In this step, the query is evaluated with the
selected plan, and the result of the query is output.

An important concept in query processing is cost model. A cost model
makes use of statistical information in DBMS catalog to determine the cost of
alternative operations optimally, so that the optimizer can select the efficient
plan with the least estimated cost. The cost of query evaluation can be
measured in terms of a number of different resources, including disk accesses,
CPU time to execute a query, and the cost of communication in
distributed/parallel database systems.

5.5.2 BASICS OF TRANSACTION PROCESSING

What is a transaction? It is a unit of program execution that accesses and
possibly updates various data items in a DBMS. A database transaction should
hold the ACID properties:
• Atomicity (A): All or none operations of the transaction are executed.
• Consistency(C): Database should be consistent before and after

transaction
• Isolation(I): Each transaction is unaware of other transactions executing

concurrently in the system.
• Durability(D): Changes made by completed transactions should be made

persistent, even if there are system failures.
A transaction could be in different status (usually referred to as transaction

states), such as active, partially committed (after the final statement has been
executed), committed (after successful completion) or aborted. Important
issues to be considered in transaction processing include concurrency control
and recovery. When several transactions execute concurrently in the same
database, the isolation property may not longer be preserved. Concurrency
control provides a variety of mechanisms to control the interaction among the
concurrent transactions. Recovery is referred to the part of database system
which is responsible for the restoration of the database to a consistent database
state (or instance) that existed prior to the occurrence of the failure.

5.5.3 HOW TRANSACTION PROCESSING IS RELATED TO QUERY
 PROCESSING

It is important to understand how query processing is related to transaction
processing. The query manager converts a query into a sequence of requests
for stored data (usually involving query optimization). DBMS allows the user
to group one or more queries (including possible modification) into a
transaction. A transaction usually results from the execution of a user program
written in high level language (such as SQL queries). It is convenient to

regard a transaction as a series of read operations and write operations of
database objects (here the term object is used in its broad sense) and delimited
by statements of the form begin Transaction and end transaction. A system
component called transaction manager ensures that all these transactions are
executed properly so that ACID properties can be supported (see Figure 5.2 in
Section 5.2).

5.6 INFORMATION RETRIEVAL (IR)

5.6.1 DIFFERENCES BETWEEN DBMS AND IR SYSTEMS

Extending our discussion on database retrieval, we further examine
information retrieval (IR). Unlike database retrieval, information retrieval is
concerned with unstructured data (such as documents). A detailed discussion
on IR is beyond the scope of this book, and can be found elsewhere [Frakes
and Baeza-Yates 1992, Sparck-Jones, Willett, and Larson 1997, Korfhage
1997]. A discussion on the relationship between DBMS retrieval and IR is in
[Chen 1994]. IR has drawn much attention recently, particularly due to the
popularity of the Internet, and the task of building data warehouses through
Internet. In this section, we introduce some most important features of IR,
which are useful in building data warehouses for handling decision support
queries.

5.6.2 BASICS OF INFORMATION RETRIEVAL

 The most basic idea of information retrieval starts with representation of
documents. Unlike structured data in databases, documents can be represented
as vectors in a vector space. A document represented as a vector

<(dt1, w1), (dt2, w2), (dt3, w3), … (dtn, wm)>,
where dri denotes a keyword used to describe the document, and wi denotes the
weight (which could be determined by frequency of use). Similarly, a query is
represented as

<(qt1, w1), (qt2, w2), (qt3, w3), … (qtn, wn)>,
where qri denotes a keyword used to describe the query and wi denotes the
weight (which could be determined by frequency of use). The following are
some basic things we should know:
• Each document is a point in an nD space (n-dimensional space);
• Each dimension corresponds to a term (concept);
• Each document is a vector from origin of nD space
• Each query is a vector from origin of nD space;
• Similarity is the cosine of angle between vectors, defined as

Similarity(d, q) = Σi dtiqti/(Σidti
2 Σiqti

2)1/2

We use vector space model to represent documents and queries for Web
search. For example, if we consider representation of documents using five
keywords, we can use a 5-D space model:

 doc-1: <(internet, 0.1), (database, 0.07), (warehouse, 0.02),
 (data mining, 0.05), (association rule, 0.3)>.
 doc-2: <(internet, 0.09), (warehouse, 0.1), (data mining, 0.06),
 (association rule, 0.2)>.
 doc-3: <(internet, 0.1), (database, 0.6), (warehouse, 0.3),
 (data mining, 0.1), (association rule, 0.1)>.

Since it is hard to visualize a high dimension space, in the following we use
the three dimension (3D) example to illustrate the basic idea of information
retrieval. Consider an example as shown in Figure 5.3, where documents and
queries are represented in three-dimensional space with terms "data
warehouse," "Internet" and "data mining" as three dimensions. Suppose a
document is represented as doc(0.4, 0.5,0.2) while the query is represented as
query (0, 0.5, 0.5).

Figure 5.3 Similarity between a query and a document

In Figure 5.3, the similarity between the query and the document can be
calculated by plugging in the numbers in the above formula:
 (0.0× 0.4 + 0.5 × 0.3 + 0.4 × 0.2)/((0.02 + 0.42 +0.52)(0.42 + 0.32 + 0.22))1/2

There are important issues in information retrieval, such as ranking of
documents based on how they are relevant to the query, users' relevance
feedback, precision and recall, as well as others. In the following, we provide
a brief discussion on precision and recall:
• Precision =

|number of relevant documents ∩ number of retrieved documents| /

|number of retrieved documents|

 Internet (Y)

 1.0

 0.4 doc (0.3, 0.4,0.2)

 query (0, 0.5, 0.4)

 α
 Data warehouse (X)
 0 | |

 0.5 1.0
__
 0.5

 1.0 Data mining (Z)

• Recall =
|number of relevant documents ∩ number of retrieved documents| /

|number of relevant documents|
For example, suppose for the previous query, documents d1, d3, d6, d8, d12

and d15 are relevant to the query, while documents d1, d3, d4, d6 and d12 are
actually retrieved. In this case, documents d1, d3, d6 and d12 are both relevant
and retrieved, so we have

Precision = 4/5 = 0.8, Recall = 4/6 = 0.67.

5.6.3 WEB SEARCHING, DATABASE RETRIEVAL, AND IR

The basic idea of information retrieval has been extended to searching the
World Wide Web. It is important to note that the same terminology in
different contexts may mean different things. For example, in database
retrieval, the term indexing refers to access methods, i.e., data structures and
file organizations for efficient access to data; while in Web searching, just like
in IR, it refers to construction of a list of key terms to represent the content of
a document. The overall process of Web searching is depicted in Figure 5.1.

Figure 5.4 Overall process of Web searching

We can compare Web searching with information retrieval, which can further
be compared with database querying. The result of comparison is shown in

 Information need

 Query

Document
collector

 The
 Web

Query
representation Document

representation

Matching

Retrieved
documents

Table 5.1. More detailed discussion on this topic can be found in [Florescu,
Levy and Mendelzon 1998, Chaudhuri 1998].

 Table 5.1 Comparing web searching with database querying and information retrieval
Database querying Information retrieval Web searching
1. Highly structured data
2. Precise query/matching

3.Dynamic data allocation

1. Unstructured data (plain text)
2. Imprecise querying/matching
and feedback
3. Static document allocation

1. Semi-structured data
2. Imprecise querying/
matching and feedback
3. Dynamic data allocation

5.7 DATA WAREHOUSING

The Internet provides an excellent chance (and also tremendous challenges)
for building data warehouses. In this section, we take a look at this issue.
More detailed discussion on data warehousing is provided in Chapter 11.

5.7.1 BASICS OF PARALLEL AND DISTRIBUTED DATABASES

5.7.1.1 Basics of parallel databases
Parallel systems improve processing and I/O speeds by using multiple

CPUs and disks in parallel. There are two main measures of performance of a
database system: the throughput (the number of tasks that can be completed in
a given time interval) and the response time (the amount of time it takes to
complete a single task from the time it submitted). A system that processes
a large number of small transactions can improve throughput by processing
many transactions in parallel. A system that processes large transactions can
improve response time as well as throughput by performing subtasks of each
transaction in parallel. Two important issues in studying parallelism are
speedup and scale-up. Speedup refers to running a given task in less time by
increasing the degree of parallelism. Scale-up refers to handling larger tasks
by increasing the degree of parallelism. There are several architectural models
for parallel machines used in parallel databases: shared memory (all the
processors share a common memory), shared disk (all the processors share a
common disk), shared nothing (the processors share neither a common
memory nor common disk), hierarchical (a combination of the preceding
architectures). Shared-nothing architecture has been proven the most
successful one, because it provides both linear speedup as well as linear scale
up, although it requires extensive reorganization of the DBMS code.

The basic idea behind parallel databases is to carry out evaluation steps in
parallel whenever possible, in order to improve performance. Individual
relational algebra operations (as discussed in Chapter 4) can be parallelized. In
addition, we can execute different operations in an query in parallel and
execute multiple queries in parallel. In its simplest form, I/O parallelism refers
to reducing the time required to retrieve relations from disk by partitioning the

relations on multiple disks. The most common form of data partitioning in a
parallel database environment is horizontal partitioning: the tuples of a
relation are divided (or declustered) among many disks, such that each tuple
resides on the disk.
• Interquery parallelism: In interquery parallelism, different queries or

transactions execute in parallel with one another. Transaction throughput
can be increased by this form of parallelism. The primary use of
interquery parallelism is to scale up a transaction-processing system to
support a larger number of transactions per second. However, the
response times of individual transactions are no faster than they would be
if the transactions were run in isolation.

• Intraquery parallelism: Intraquery parallelism refers to the execution of a
single query in parallel on multiple processors and disks. Using
intraquery parallelism is important for speeding up long-running queries.
The execution of a single query can be parallelized in two ways:
♦ Intraoperation parallelism: To speed up processing of a query by

parallelizing the execution of each individual operation, such as sort,
select, project, and join.

♦ Interoperational parallelism: To speed up processing of a query by
executing in parallel the different operations in a query expression.

 5.7.1.2 Distributed database systems
In a distributed database system, the database is stored on several

computers. The computers in a distributed system communicate with one
another through various communication media, such as high-speed networks
or telephone lines. They do not share main memory or disks.

Unlike parallel systems, in which the processors are tightly coupled and
constitute a single database system, a distributed database system consists of
loosely coupled sites that share no physical components. In addition, the
database systems that run on each site may have a substantial degree of mutual
independence. In recent years, the need has arisen for accessing and updating
data from a variety of preexisting databases, which differ in their hardware
and software environments, and in the schemas under which data are stored. A
multidatabase system is a software layer that enables such a heterogeneous
collection of databases to be treated like a homogeneous distributed database.

A simple and popular distributed DBMS architecture is called client server.
A client-server system has one or more client processes (which are responsible
for user-interface issues) and one or more server processes (which manage
data and execute transactions). A client process can send a query to any server
process. Howeer, the client-server architecture does not allow a single query
to span multiple servers. As a consequence, a client process could be quite
complex, and its capabilities would begin to overlap with the server. To deal
with these problems, collaborating server systems have been developed.

In distributed relational databases, relations are usually fragmented. There
are two different schemes for fragmenting a relation: horizontal fragmentation

splits a relation by assigning each tuple of relation r to one or more fragments;
vertical fragmentation splits the relation by decomposing the scheme R of
relation r so that the original relation can be reconstructed by joining the
fragments back (it is often convenient to add a special attribute called tuple-ID
for this purpose).

For centralized systems, the primary criterion for measuring the cost of a
particular strategy is the number of disk accesses; in a distributed system, we
must take into account several other matters, including the cost of data
transmission over the network and the potential gain in performance from
having several sites process parts of the query in parallel.

Distributed environment also brings more challenges for issues related to
transaction processing. For example, in order to ensure atomicity, all the sites
in which a transaction T is executed must agree on the final outcome of the
execution. T must either commit at all sites, or it must abort at all sites.
Therefore, the transaction coordinator of T must execute a commit protocol.
The simplest and most widely used is the two phase commit protocol (2PC).
Roughly speaking, the first phase is to send prepare message while the second
phase is based on the received massages to determine commit or abort.

5.7.2 DATA WAREHOUSING AND DECISION SUPPORT

The complexity involved in distributed database systems has stimulated
organizations to find alternative ways to achieve decision support. Data
warehousing is an emerging approach for effective decision support. A data
warehouse is a "subject-oriented, integrated, time-varying, non-volatile
collection of data that is used primarily in organizational decision making."
[Inmon 1996]. Though considered by some business people that data
warehousing is a low-key answer for the "failed" distributed database systems,
data warehousing does take advantage of various techniques related to
distributed and parallel computing. A discussion on distributed and parallel
computing issues in data warehousing can be found in [Garcia-Molina, Labio,
Wiener and Zhuge 1999].

Data warehousing provides an effective approach to deal with complex
decision support queries over data from multiple sites. The key to this
approach is to create a copy (or derivation) of all the data at some one
location, and to use the copy rather than going to the individual sources. Note
that the original data may be on different software platforms or belong to
different organizations.

Data warehouses contain consolidated data from many sources (different
business unit), spanning long time periods, and augmented with summary
information. Warehouses are much larger than other kinds of databases, sizes
are much larger, typical workloads involve ad hoc, fairly complex queries,
and fast response times are important. Data warehousing encompasses
frameworks, architectures, algorithms, tools and techniques for bringing
together selected data from multiple databases or other information sources
into a single repository suitable for direct querying or analysis. Data

warehousing is especially important in industry today because of a need for
enterprises to gather all of their information into a single place for in-depth
analysis, and the desire to decouple such analysis from their OLTP systems.
Since decision support often is the goal of data warehousing, clearly
warehouses may be tuned for decision support, and perhaps vice versa.

In its simplest form, data warehousing can be considered as an example of
asynchronous replication, in which copies are updated relatively infrequently
(see [Ramakrishnam 1998] for more discussion). However, a more advanced
implementation of data warehousing would store summary data or other kind
of information derived from the source data. In other words, a data warehouse
stores materialized views (plus some local relations if needed).

It is common in a data warehousing environment for source changes to be
deferred and applied to the warehouse views in large batches for efficiency.
Source changes received during the day are applied to the views in a nightly
batch window (the warehouse is not available to the users during this period).
Most current commercial warehousing systems (e.g. Prism, Redbrick) focus
on storing the data for efficient access, and on providing extensive querying
facilities at the warehouse. Maintenance of warehousing data (in a large
degree, maintenance of materialized views) is thus an important problem. A
more detailed discussion on data warehousing will be discussed in Chapter 11.

The widespread adoption of Internet technology will profoundly affect On-
Line Analytical Processing (OLAP), which refers to applications dominated
by stylized queries that typically involve group-by and aggregation operators
for analysis purpose. Such queries are extremely important to organizations to
analyze important trends so that better decisions can be made in the future. In
addition, most vendors of OLAP engines have focused on Internet-enabling
their offerings. The true promise of the Internet is in making OLAP a
mainstream technology, that is, moving OLAP from the domain of analysts to
consumers. E-commerce has emerged as one of the largest applications of the
Internet in decision support. The basic concepts of data warehousing and
aggregation have naturally made their way onto the web. In fact, some of the
most popular Web sits on the Internet are basically databases. For example,
search engines such Alta Vista and Lycos attempt to warehouse the entire
web. Aggregation as a means to navigate and comprehend the vast amounts of
data on the Internet has to also be recognized. Directory services such as
Yahoo and Excite attempt to aggregate the entire web into a category
hierarchy and give users the ability to navigate this hierarchy. The
infrastructure for decision support is also in the process of improvement
[Harinarayan 1997]. A more detailed discussion on data warehousing and
related issues will be given in Chapter 11.

5.7.3 MIDDLEWARE

Middleware is a loosely defined term referring to the products to help
customers deal with disparate, heterogeneous environments more effectively.
In the DBMS arena, middleware products provide a consistent interface to

different local and remote data sources. Typically, data sources are supported
through one or more specific drivers that (among other things) pass requests
to a given data source and enable the results to be returned to the application.

From a customer's viewpoint, typical elements of data access middleware
offerings include the following:

• an application programming interface (API) consisting of a
series of available unction calls in C and a series of data access
statements in dynamic SQL,

• a component called middleware engine for routing requests to
various drivers and performing other functions (structures of
middleware engine differ, depending on whether a global catalog
or directory exists), and

• drivers to translate requests issued through the middleware API
to a format intelligible to the various back-end data sources.

Gateways may be considered an early attempt at middleware; they provide
specific point-to-point connectivity rather than broad-based connectivity.

The logical architecture of a data warehouse, including the roles of the
middleware and data marts are depicted in Figure 5.5. Each data mart
contains a portion of the data stored in the data warehouse (to be further
discussed in Chapter 11). Also note source data are assisted by wrappers that
facilitate conversion of data for integration.

Figure 5.5 Logical architecture of a data warehouse

5.8 RULE-BASED EXPERT SYSTEMS

5.8.1 FROM DATA AND INFORMATION RETRIEVAL TO
KNOWLEDGE RETRIEVAL

Although data and information retrieval are important in decision making
processes, they lack the power of reasoning. Now that we have covered data

User 1 User 2 User n

Middleware

Data
Mart

Data
Mart

Data
Warehouse

Source
Data

Source
DataSource

Data

and information retrieval systems, we are ready to discuss knowledge retrieval
systems which support reasoning.

Typically, management of data refers to retrieval and updating of data,
while management of knowledge also requires inference of data. One practical
way to distinguish knowledge from data is to view a database as consisting of
assertions involving constants (e.g., "Professor Tom is 35 years old") , while a
knowledge base consists of more general statements involving variables (e.g.,
"Many college professors are middle-aged male") [Wiederhold 1984].
However, a deeper understanding from a knowledge-level perspective (see
Chapter 2) would interpret databases as knowledge bases of a certain limited
form [Brachman and Levesque 1986]. Therefore, a set of data structures used
by a program is both a knowledge base and a database: to ask about
implementation mechanisms is to view it as a database, while to delve more
deeply into expressiveness (including what is implied) is to adopt a knowledge
base perspective. [Freundlich 1990] noticed that the domain of database
technology has not required expressive capabilities as sophisticated as those of
knowledge-based technology. It has also been noted that practices in
knowledge bases required less sophisticated implementation mechanisms, and
so have been less concerned with data-level issues. As computers tackle new
tasks in new domains, support is needed for large-scale, complex, data-
intensive applications in user-oriented environments. Handling these tasks
requires a new way of thinking about databases; a shift from the view of data
as values (i.e., sets of uniformly formed data types) to a view of data as
chunks of knowledge. Another difficulty is that the interests of knowledge
base practitioners and database practitioners differ, but this situation is
changing very soon. Now, given the physical implementation of a database,
what can we do to extend it to the power of processing knowledge?

The relationship between data and information retrieval and knowledge
retrieval can also be explained from the nature of computational intelligence.
Computational intelligence is concerned with learning, memory organization
and access, functional constraints with knowledge analysis, as well as scale-
up. The integration of learning with every phase of cognitive processing is
extremely important. Inseparable for the importance of learning is the
importance of memory organization and access, and learning should not be
simply aggregating more of the individually acquired atomic units [Schank
1993]. Knowledge retrieval is such an integrated process concerning memory
access (which is comparable with database access) and organization.

5.8.2 DEDUCTIVE RETRIEVAL SYSTEMS

A deductive retrieval system refers to any system that stores knowledge in
the form of rules and implements procedures for drawing conclusions from
that knowledge. Deductive retrieval systems are similar in some respects to
theorem proving systems, but are generally tailored for a particular type of
problem solving. Most expert systems can be characterized as deductive
retrieval systems. One thing that both deductive retrieval systems and theorem

provers have in common is that they represent knowledge symbolically and
declaratively. A typical deductive retrieval system consists of a collection of
facts and rules, and a collection of procedures that operate on the storage,
answering queries, noticing when certain conclusions are warranted,
expanding the facts and rules as new data are added, and cleaning up when
data are withdrawn. The database in most deductive retrieval systems is more
than a passive repository for facts and rules. Often the information stored in a
knowledge base is supplemented as well as organized (e.g., using a
discrimination tree) [Dean, Allen, and Aloimonos, 1995].

5.8.3 RELATIONSHIP WITH KEY INTERESTS IN
COMPUTATIONAL INTELLIGENCE

In order to understand the importance of expert systems from the key
interests of computational intelligence, let us briefly review what we presented
in Chapter 2. We started with the notion of problem solving as search and
discussed the importance of representing knowledge for search. We also
notice although search is useful, it may be a time-consuming process.
Therefore, there is the need for limiting search (to improve performance). In
order to achieve this, we have several choices. One way is to find better
(namely, more efficient) search methods; for example, we may employ
heuristics to search only promising states. Another way to limit search is to
resort to knowledge, because knowledge is power. The more knowledge, the
less search is needed. The philosophy used here is to emphasize the need to
encode a huge amount of domain specific knowledge while using some
relatively simple (and fixed) inference mechanism. Comparing with general
problems solvers in early history of computational intelligence, expert systems
represent a sharp philosophical change in achieving intelligent behavior.

5.8.4 BASICS OF EXPERT SYSTEMS

An expert system is an interactive system which is able to demonstrate
expertise (expert level of knowledge) in a specific knowledge domain (such as
diagnosis, trouble shooting) and solve problems in this specific domain for
consultation. The term expert system is closely related to the concept of
knowledge-based system , and these two terms are usually used
interchangeably. However, we should point out unlike an expert system, a
knowledge-based system does not require expert-level knowledge.

It is important to understand when an expert system solution is appropriate.
This is because just like anything else, the expert system approach has pros
and cons. Successful application areas are abundant, but lessons learned are
also important.

5.8.5 PRODUCTION SYSTEM MODEL

A popular approach to build expert systems is by using the production
system model. In this section we briefly introduce this model.

5.8.5.1 Important components
Production systems provide an important model for building expert

systems. (A variation of this model has been called the blackboard structure
model, with emphasis on distributed knowledge sources.) The following are
important components in the production system model.
• Production rules (long term memory);
• Working memory (short term memory);
• Recognize-act cycle.

Let us take a brief look at the first two components. A production rule has
the following format:

if antecedent (premise/condition) then consequence (conclusion/action)
Here are some examples:

• If it does not rain, then Tom will go.
• If the engine does not turn over, and the lights do not come on

then the problem is battery or cables.
The set of production rules form the long term memory (namely, the

knowledge base). The case-specific data (namely, data or facts directly used in
the current session) are stored in the working memory. Contents in working
memory are either conditions or actions of those rules which were fired in
current session. After the session ends, the content stored there are all gone.
Working memory thus works like a buffer, and can be used to make reasoning
process efficient.

5.8.5.2 The recognize-act cycle
The recognize-act cycle is the heart of the production systems model. It

consists of three elements: match, select, and act. The cycle is repeated until
the problem has been solved or there are no rules in the conflict set.

Note the recognize-act cycle does not specify the direction of search. In
general, a query can be answered by using goal-driven (backward reasoning)
or data driven (forward reasoning). (The term backward chaining means that
we are trying to prove a hypothesis by looking for evidence to support it.)

We use the following example to illustrate the difference between goal
driven versus data driven. Given facts a, h and e, along with the following
rules:

(1) if a then b,
(2) if a and c then d,
(3) if h and e then d,
(4) if d and m then g.

Suppose we want to search for goal g. The different behavior of goal driven
and data driven is depicted in Figure 5.6, where two search trees are
constructed along with different directions. Note that in case of data driven, if
we start with rule (1), since from b we can go nowhere, alternative rules must
be used. In case of goal driven, we reach a dead end at c, because it is not a
given fact. As for the design choice itself, it is an important design decision to
determine whether goal driven or data driven should be used. For example, if

there are a lot of facts to choose while there is only one clearly defined goal,
then the goal-driven approach makes sense.

 rch

Figure 5.6 Direction of search
In the following, we will consider the recognize-act cycle in the case of data

driven approach.
• Match (Recognize): During the match portion of the cycle, the conditions

in the left hand side of the rules are matched against the contents of
working memory to determine which rules have their LHS conditions
satisfied with consistent bindings to working memory terms. Rules which
are found to be applicable are put in a conflict set.

• Select: From the conflict set, one of the rules is selected to execute. The
selection strategy may depend on recency of usage, specificity of the rule,
or some other criteria. This usually referred to as conflict resolution:
several candidates of rules to fire (which means to activate or apply).

• Act (Execute): The rule selected from the conflict set is executed by
carrying out the action or conclusion part of the rule, the RHS of the rule.

The production system model can be summarized in Figure 5.7.

Figure 5.7 The production system model

In order to improve the efficiency of the match process, an algorithm called
RETE algorithm has been developed (along with an expert system
development language called OPS5). The main time-saving features of RETE
are:
• In most expert systems, the contents of working memory (see below)

change very little from cycle to cycle. There is a persistence in the data
known as temporal redundancy. This makes exhaustive matching on
every cycle unnecessary. Instead, by saving match information, it is only
necessary to compare working memory changes on each cycle.

 start

 match

 act select

Conflict
Set

Knowledge
Base

Working Memory

 Data driven Goal driven
 g Direction of g
 tree construction
 d m
 b? d

 a h e m a c h e

• Many rules in a knowledge base will have the same conditions occurring
in their LFS. Repeated testing of the same conditions in those rules could
be avoided by grouping rules which share the same conditions and linking
them to their common terms.

For a more detailed discussion on RETE algorithms, see [Giarratano and
Riley, 1998].

5.8.5.3 The need for a separate knowledge base
In order to employ production systems model to build expert systems, we

should first understand what is the architectural implication of this model. A
storage of explicitly represented problem-solving knowledge (namely, a
knowledge base) is maintained to separate its content from the control
knowledge. This separation of domain knowledge from control knowledge is
one of the most important principles offered by the production systems model.
In order to understand the meaning of separating knowledge from control, let
us compare the following two versions of Prolog code as shown below. Our
task is to print the names of state capitals. We have two choices. As shown in
Version 1, we have a hard-code version; for each state, we write a statement to
print its capital. In Version 2, however, we separate the print statement from
the domain knowledge of state capitals. Version 2 is superior to Version 1
because of modularity and flexibility.
Version 1 (Hard-code version):
 print_capital(texas) :- write(austin).
 print_capital(kansas) :- write(topeka).
 print_capital(nebraska) :- write(lincoln).
 print_capital(louisiana) :- write(baton-rouge).
 print_capital(_) :- write('Capital is not known').
Version 2 (Separate print control knowledge from domain knowledge):
 %Print control knowledge
 print_capital(Capital) :-
 capitalcity(State, Capital), write(Capital).
 print_capital(_) :- write('Capital is not known').
 %Knowledge base of state capitals
 capitalcity(texas, austin).
 capitalcity(kansas, topeka).
 capitalcity(nebraska, lincoln).
 capitalcity(louisiana, baton-rouge).
 The advantage of separating inference control is that it keeps inference
mechanism simple and makes the knowledge base easy to maintain. This
separation has been used as an important principle for designing rule-based
expert systems. An expert system is a knowledge-based system which
demonstrates expert-level of knowledge. The power of these systems mainly
comes from the huge amount of knowledge, rather than the inference
mechanism.

5.8.6 KNOWLEDGE ENGINEERING

The process of building an expert system is referred to as knowledge
engineering. It would be beneficial to compare knowledge engineering versus
software engineering:
• Type of knowledge being represented is different: Software engineering

involves representing well-known and well-defined algorithmic
procedures that are widely known, while knowledge engineering involves
representing the extensive imprecise, and ill-defined heuristic knowledge
that is stored in the minds of a few experts.

• The nature and quantity of the knowledge is different: Typically, the
nature and quantity of the problem-solving knowledge required within a
knowledge-based system is not well-known even by the experts
themselves.

Knowledge engineering is a design process, and knowledge acquisition has
been considered as the "bottleneck" of knowledge engineering.

It is important to distinguish different kinds of people involved in expert
systems.
• knowledge engineer: A person who develops the expert system. It is often

useful for the knowledge engineer to be a novice in the problem domain
because they should be able to spot domain experts' conceptual jumps and
ask for clarification;

• domain experts, who have cooperated knowledge engineers for system
development; and

• users, who are usually domain experts as well.
An important task in knowledge engineering is evaluation. Evaluation

means to carry out a technical judgment of the ontologies, their software
environment, and documentation with respect to a frame of reference (the
requirements specification document) during each phase and between phases
of their life cycle. Evaluation subsumes the terms verification and validation.
A colloquial definition of the terms from software engineering is:
• Verification: This is to answer the question: "Am I building the product

right?" The purpose is to make sure that the new rule is in the right form.
• Validation: This is to answer the question: "Am I building the right

product?" The purpose is to determine that a chain of correct inferences
leads to the correct answer in expert systems. Verification refers to the
technical process that guarantees the correctness of an ontology, its
associated software environments, and documentation with respect to a
frame of reference during each phase and between phases of its life cycle.
Validation guarantees that the ontologies, the software environment, and
documentation correspond to the system that they are supposed to
represent.

5.8.7 BUILDING RULE-BASED EXPERT SYSTEMS

5.8.7.1 Expert system architecture
The components of a typical expert system (built on production system

model) is shown in Figure 5.8.

Figure 5.8 Architecture of an expert system

 5.8.7.2 Some important features of rule-based systems
A rule-based expert system contains components that usually can be found

in the production systems model, and more. It usually include the following
components:
• Inference engine: An inference engine separates from the domain

knowledge is the most important factor for a successful system. The
inference engine usually works in a simple and fixed manner; for
example, it could be designed as either data driven (i.e. forward
reasoning) or goal driven (i.e. backward reasoning).

• Knowledge-base ("long term memory"): This is where the domain
knowledge is stored. The most common form of knowledge bases are
rule-based systems consisting of rules (may be heuristic rules) and facts

 KNOWLEDGE

 BASE

INFERENCE

ENGINE

USER
INTERFACE

WORKING
MEMORY

EXPLANATION
UNIT

(rules may be indexed and the rule base may be partitioned into several
parts).

• Working memory ("short term memory"): This is the place to store case-
specific data (initialized as empty when a session starts).

• Explanation unit: In addition to provide a consultation to a user, an expert
system can explain its own behavior. This will enhance the confidence of
the user.

5.8.7.3 A simple example
We use the following simple example to illustrate how a rule-based expert

system works. Consider a troubleshooting system. We want to diagnose the
problem of a TV set using goal-driven reasoning. Suppose we have the
following rules (for convenience, they are written in Prolog, but do not have to
be implemented in Prolog):

diagnose(a) :- symptom-1, symptom-2. %Rule 1
symptom-1 :- symptom-3, symptom-4. %Rule 2
diagnose(b) :- symptom-5, symptom-6. %Rule 3
sumptom-6 :- symptom-7, symptom-8. %Rule 4
symptom-2 :- write('symptom 2?'), read(yes), nl. %Rule 5
symptom-3 :- write('symptom 3?'), read(yes), nl. %Rule 6
symptom-4 :- write('symptom 4?'), read(yes), nl. %Rule 7
symptom-5 :- write('symptom 5?'), read(yes), nl. %Rule 8
symptom-7 :- write('symptom 7?'), read(yes), nl. %Rule 9
symptom-8 :- write('symptom 8?'), read(yes), nl. %Rule 10

In order to understand how the system works, let us take a look at two
sample sessions. Let us also assume to use smallest-numbered rule as a simple
way for conflict resolution. The static structure of the rules (namely, how
these rules are related to each other) is shown in Figure 5.9.

Figure 5.9 Static structure of the rules

In order to show the dynamic construction of the search tree (in the sense
discussed in Chapter 2), let us consider the following sample scenario.

Symptom 3?
no
symptom 5?
yes
symptom 7?
yes
symptom 8?
yes
X = b

diagnose(X)
 Rule 1 Rule 3
 a/X b/X
 symptom-1 symptom 2 symptom-5 symptom-6
 Rule 2 | Rule 5 | Rule 8 Rule 4
 ? ?
 symptom-3 symptom-4 symptom-7 symptom-8
 | Rule 6 | Rule 7 | Rule 9 | Rule 10
 ? ? ? ?

An ideal inference engine should construct the dynamic search tree in the
manner as shown in Figure 5.10. Comparing with Figure 5.8, we note only the
portion in the static structure which is related to the current session (which
depends on the user's answers) is shown in the figure (others are pruned).

Figure 5.10 A dynamic search tree

5.8.7.4 Expert system shells
An expert system shell is a tool which can be used for expert system

development. In a sense, it can be considered as an expert system with an
"empty" knowledge base (namely, one knowledge base can be replaced by
another knowledge base). Prolog can serve as an expert system shell, because
its built-in search mechanism can serve as a backward reasoning inference
engine. More flexible ways of reasoning, however, can be achieved by
building an inference engine on the top of Prolog. Many other commercial
expert systems shells have also been developed to meet various user needs.

5.8.7.5 Explanation facility
The reason to have explanation facility is to improve user confidence.

Traditionally there are two kinds of problems:
• Why: The user asks the computer "why do you want to know this?" and

the computer returns a rule to be fired. In this case, the system looks at
the upper level of the tree (i.e., one level above the node accessed).

• How: The user asks "how did you get here?" and the computer returns
rule(s) fired. In this case, the system looks at the subtrees rooted at the
accessed node.

For example, in the previous session, suppose the user wants to know why
she is asked about symptom 3. The system provides an explanation by looking
at one level above the node representing symptom 3. After the explanation,
the same question is repeated so the user is given a second chance to enter yes
or no:

symptom 3?
Why
Because I am trying to fire rule 2 which requires symptom
3 and symptom 4
symptom 3?
no
symptom 5?
…

diagnose(X)
 Rule 1 Rule 3

 Symptom-1 Symptom-5 Symptom-6
 Rule 2 | Rule 8 Rule 4
 yes
 Symptom-3 Symptom-7 Symptom-8
 Rule 6 | Rule 9 | Rule 10
 | yes yes
 no

5.8.8 SOME OTHER ASPECTS

5.8.8.1 Weak methods, Strong methods and Role-limiting methods
 From expert system shells we can provide the following comments. During
the 1960s, a significant piece of the computational intelligence community's
attention was devoted to identifying and analyzing the so-called weak
methods. They are called weak because their usefulness is only weakly
constrained by task features; each is potentially applicable to a broad set of
task types. A weak method does not put any limits on the nature nor
complexity of the task-specific control knowledge it can use. A role-limiting
method can be viewed as a specialization of a weak method that predefines the
task-related control knowledge the method can use. [McDermott 1988]
pointed out that the underlying idea here is that if we take seriously the
knowledge base/inference engine distinction that expert system developers
have made so much of, it should be possible to devise a set of role-limiting
methods, where each method defines the roles that the task-specific
knowledge requires it must play and the forms in which that knowledge can be
presented. A role-limiting method typically consists of a simple loop over a
sequence of 5 or 10 steps. These role-limiting methods serve as knowledge-
acquisition tools. One method is called cover-and-differentiate, a method
suitable for certain types of diagnostic tasks, as demonstrated in a tool called
MOLE. A MOLE-built program searches a space of possible explanations.
MOLE has the following control knowledge:

1. Determine the events that potentially explain the symptoms.
2. If there is more than one candidate explanation for any event, then

identify information that will differentiate the candidates by
performing the following: ruling out one or more of the explanatory
connections, ruling out one or more of the candidate explanatory
events, providing sufficient support for one of the candidate
explanatory events, and providing a reason for preferring some of the
explanatory connections over others.

3. Get this information (in any order) and apply it (in any order).
4. If Step 3 uncovers new symptoms, go to step one.

Chandrasekaran proposed a theoretical framework for looking at
knowledge-based problem solving in terms of generic tasks [Chandrasekaran
1986]. Abstractly, the generic tasks can be characterized by providing
information about a task specification in the form of generic types of input and
output, domain knowledge and a family of control regimes. Six generic tasks
have been found; they are considered as very useful as building blocks for the
construction (and understanding) of knowledge-based systems. Furthermore,
role-limiting methods have been studied [McDermott 1988]. In a sense, role-
limiting methods provide a concrete way to realize generic tasks in
knowledge-based reasoning.

5.8.8.2 Remarks on other features of expert systems
We have discussed the most fundamental features of rule-based expert

systems. There are many other important features. One such important feature
is about reasoning under uncertainty. In fact, frequently rules represent
heuristic knowledge, they are not necessarily always true or only true to some
degree. In fact, reasoning under uncertainty is an important issue, and we will
take a look at this issue in a broader sense (i.e., not restricted to expert system
context) in Chapter 12 and Chapter 13.

Another remark is that expert systems can be built the models other than
production systems model (for example, using neural networks). However,
many general principles involved in building expert systems remain same.

5.8.9 CLIPS: A BRIEF OVERVIEW

CLIPS (an acronym for C Language Integrated Production System,
[Giarratano and Riley 1998]) is a multi-paradigm programming language that
provides support for rule-based, object-oriented, and procedural programming.
CLIPS is a forward-chaining, rule-based production-system language, based
on the RETE algorithm for pattern-matching. A command-line interpreter is
the default interface for CLIPS. CLIPS programs are expressed by means of
commands, functions and constructs. In CLIPS, a fact is presented as an
ordered list of fields; the system also supports template (or non-ordered facts).
Rules allow the user to specify a set of conditions to CLIPS, such that when
the conditions in the left-hand side (LHS) are satisfied, a set of actions in the
right-hand side (RHS) are executed. Note that here we will not focus on the
syntactic issues. We want to emphasize some important things which may or
may not be explicitly stated in literature.

It would be beneficial to compare CLIPS with Prolog. The problem is how
to compare. The following is a list of questions which could be used for
comparison:

• Is it based on production-system model?
• Does it use functions or predicates?
• Does it use recursion or iteration?
• What is the direction of search for problem solving?
• What should be on LHS and RHS of a rule?
• Could you make a simple rule in CLIPS? How would you write the

same rule in Prolog?
• How is matching performed?
• Is it a typed language?
• Does it use global variables?
• Can you think about ther criteria for comparison?

The reader is encouraged to check the CLIPS manual and answer these
questions by herself. Nevertheless, we can briefly answer some of the
questions below. Unlike Prolog which is a logical language, CLIPS has a
more direct connection with the production systems model. Unlike Prolog
which uses unification, CLIPS puts emphasis on the efficiency of matching by

manipulating the working memory. In particular, CLIPS employs a data
structure called agenda, to keep on tracking current activities.

CLIPS also incorporates some considerations involving computational
intelligence for decision supports as discussed in early chapters. For example,
the way used in removing a rule and the use of logical conditional elements
resemble the considerations behind integrity constraints as discussed in
DBMS.

Basic constructs in CLIPS include deftemplate, defrule, defmodule, as well
as others. CLIPS has been undergone various kinds of extensions. For
example, the object-oriented programming capabilities in CLIPS, collectively
referred to as the CLIPS Object-Oriented Language (COOL), are a hybrid
combination of features found in other object-oriented languages along with
some new ideas. extended to add object-oriented features. Another important
extension is FuzzyCLIPS, which will be discussed in Chapter 12.

5.9 KNOWLEDGE MANAGEMENT AND ONTOLOGIES
In this chapter, started from data retrieval systems, we extended our

discussion to information retrieval systems, and further discussed knowledge
retrieval systems. Finally, in this section, we take a look at the issue of
manipulating multiple knowledge bases for knowledge management [O'Leary,
1998a, 1998b].

5.9.1 WHAT IS KNOWLEDGE MANAGEMENT?

Knowledge management (KM) is the formal management of knowledge for
facilitating creation, access, and reuse of knowledge stored in various
knowledge bases, typically using advanced technology. Typical KM tools
include the World Wide Web, Lotus notes, the Internet, and intranets.

Knowledge management shares some common concerns with
computational intelligence, but with somewhat different focus. For example,
knowledge bases employed by knowledge management systems are used for
both machine and human consumption, rather than for machine alone. KM
thus can be viewed as a further development of computational intelligence,
and computational intelligence techniques, such as intelligent agents,
knowledge bases, knowledge discovery, and ontology (see below) play an
important role in KM systems.

In order to stimulate group decision making in organizations, knowledge
management systems often allow discussion groups that focus on a single set
of issues or a specific activity, such as particular software or a single
consulting engagement. KM is a process of converting knowledge from the
sources accessible to an organization and connecting people with that
knowledge.

An underlying philosophy of knowledge management is that it assumes an
organization gathers all its important knowledge in a single place, and
employees use it to make good decisions that will benefit the organization.

Therefore, there is an interesting similarity between the mission of KM and
data warehousing (as discussed in Section 5.7 of this chapter), although the
emphasis here is more on the reasoning (rather than on the analysis of
aggregate data). To reach this end, there is a full range of KM converting
capabilities involving individuals and groups, data and text, as well as a full
range of KM connecting capabilities involving people and knowledge. The
capabilities include converting individual to group-available knowledge, as
well as converting data or text to knowledge. The connecting capabilities
involve two factors: people and knowledge from both directions.

5.9.2 INFORMATION TECHNOLGOY FOR KNOWLEDGE
 MANAGEMENT

Knowledge workers now believe it is knowledge that makes organizations
work. Knowledge management systems contain numerous knowledge bases,
made up of numeric and qualitative data (such as searchable Web pages).
Knowledge bases typically have several kinds of knowledge, including
engagement knowledge bases (which summarize information about different
jobs that are captured in working papers, either actual or virtual), Proposal
knowledge bases, news knowledge, best-practices knowledge bases, as well as
expert knowledge bases that identify who in the firm is expert in a particular
set of activities.

However, knowledge management is not only concerned with utilizing
existing knowledge bases. Among other things, it is also concerned with
creation of new knowledge. Where is this new knowledge from? The
knowledge movement in organizational thinking is about refining rules of
thumb used by investors into techniques and methodologies for the knowledge
auditing of organizations. This new view of organizations should help
investors to make their decisions in a sound and systematic manner. In
addition, it also aids knowledge workers to identify the real weaknesses and
strengths of the organizations they run, and to set up the priorities in order to
make them grow [Borghoff and Pareschi 1997]. Organizational knowledge is
something inherently fluid and elusive. Knowledge management is
complicated due to the need for incorporating two very different kinds of
organizational knowledge: explicit knowledge, which is the formal knowledge
that can be packaged as information and can be found in the documents of an
organization; and tacit knowledge, which is the personal knowledge embedded
in individual experience and shared and exchanged through direct, eye-to-eye
contact.

Knowledge management can be enhanced by using information technology,
and related aspects include:
• Process knowledge. It is explicit, formalized knowledge about executing

sequences of work activities. An important issue here is how to enrich
process knowledge.

• Corporate (or organizational) memories. They record the accumulated
knowledge about the services and the products of an organization, with

the purpose of supporting the continuous enhancement of knowledge-
intensive work practices and of alleviating the risk of "corporate amnesia"
due to experts taking away their knowledge when they leave.

• Information filtering. It is a crucial type of information technology due to
the huge amount of information available, particularly through the World
Wide Web.

5.9.3 DATA AND KNOWLEDGE MANAGEMENT ONTOLOGIES

Since the knowledge available in a knowledge management system comes
from various sources and takes various formats, it is a big challenge to use and
reuse such acquired knowledge in an integrated manner. Similarly, in
distributed database management systems, multi-database systems or data
warehouses, ontologies also play an important role. To deal with this
challenge, we have to consider issues related to ontology, which is explicit,
knowledge-based specifications of conceptualizations. These specifications
typically describe a taxonomy of the tasks that define the knowledge. Within
the context of knowledge management systems, ontology is the specifications
of discourse in the form a shared vocabulary. Ontology thus plays an
important role of integrated use of knowledge in an organization.

There are significant advantages of using ontology in knowledge
management. First of all, ontology defines the scope of group discussions
needed by knowledge management systems and serves as the common
language for collaboration. As a consequence, ontology also facilitates
reusability of artifacts achieved in knowledge management systems. In
addition, ontology provides more focused search capabilities needed in
organizations, filters substantial amounts of information, and directs the
information of interest to the appropriate source. In order to select an
appropriate ontology, a number of factors should be considered. More
discussion on knowledge management can be found in [O'Leary 1998a,
1998b, Borghoff and Pareschi 1997].

A collection of papers on ontologies can be found in [Swartout and Tate
1999] and a collection of papers on ontologies in distributed databases can be
found in [Bougurettaya 1999]. The American Heritage Dictionary defines
"ontology" as "the branch of metaphysics that deals with the nature of being. "
(Metaphysics refers to the branch of philosophy that systematically
investigages first causes and the nature of ultimate reality.) The term has
recently been adopted by the computational intelligence community to refer to
a set of concepts or terms that can be used to describe some area of knowledge
or build a representation of it. An ontology can be either very high level
(consisting of concepts that organize the upper parts of a knowledge base) or
domain specific. An ontology provides the basic structure or armature around
which a knowledge base can be built. The distinction between an ontology and
a knowledge base lies in that an ontology provides a set of concepts and terms
for describing some domain, while a knowledge base uses those terms to
represent what is true in that domain. Interest in ontologies is largely due to

reusing or sharing knowledge across systems [Swartout and Tate 1999]. One
key impediment to sharing knowledge is that diferent systems use different
concepts that terms for describing domains. Ontologies will fundamenally
change the way in which systems are constructed. Of particular interest is the
issue of the use of databases over the Web. Because of the sheer size of the
Web, the data volume is steadily becoming larger, and the information space
is increasingly dynamic. In light of these developments, one emerging area
that holds promise to define a common representation and understanding is the
use of ontologies in databases, which have drawn from computational
intelligence, linguistics and philosophy [Bougettaya 1999].

SUMMARY

In this rather long chapter we discussed various kinds of retrieval systems:
database retrieval, information retrieval and knowledge retrieval. A good
understanding on the similarities and differences of these systems is crucial
for the integrated use of these systems for decision support. Materials
presented in this chapter, along with those presented in the next chapter, will
form the core of database and knowledge-based systems. A collection of
recent research papers [Yang 1999] examine recent development in intelligent
information retrieval, including searching, filtering and navigating on the
Web; multimedia information retrieval; and the incorporation of machine
learning techniques into intelligent retrieval (see Chapter 10 for a discussion
on machine learning). Some advanced issues related to intelligent retrieval,
including reasoning through extended retrieval, as well as integrated retrieval
involving creativity, will be further discussed in Chapters 7 to 9.

SELF-EXAMINATION QUESTIONS

1. Make your examples to illustrate how to integrate information retrieval
and database retrieval, and discuss some advantages as well as some
issues must be considered.

2. Suppose you heard from the news report that Miami is declared as the
capital of the United States.

(a) Indicate all the possible implications you can make from this
news.

(b) Suppose you want to write a Prolog program to produce these
implications. Discuss what kind of facts and assumptions should
be stored in the knowledge base.

(c) Instead of writing a Prolog program, suppose you are asked to
accomplish the same task indicated in (b) by developing a
knowledge-based system. The knowledge-based system will not
store any facts; rather, it is to be integrated with a database

management system to retrieve all the data needed (such as
geographical information) for reasoning. Discuss some important
issues must be considered in developing such a system.

3. Consider the issue of handling duplicates in RA and SQL. (A tuple is a
duplicate of another one if they are identical.) Answer the following
questions in regard to operators used in RA and SQL:
(a) Which operators retain duplicates?
(b) Which operators automatically eliminate duplicates?
(c) When and why should duplicates be retained?
(d) Are duplicate explicitly removed or retained?

4. Consider the simple expert system example discussed in Section 5.8.7.3.
Design a system-user conversation under which the right subtree at the
node diagnose(X) will not be searched at all. Is it possible to prune the
left subtree at the same node?

REFERENCES
Borghoff, U. M. and Pareschi, R., Information technology for knowledge
management. Journal of Universal Computer Science, 3(8), 835-842, 1997.
Bouguettaya, A. (guest ed.), Ontologies and databases (special issue),
Distributed and Parallel Databases, 7(1), 5-98, 1999.
Brachman, R. J. and Levesque, H. J., What makes a knowledge base
knowledgeable? A view of databases from the knowledge level, in
Kerschberg, L. (ed.), Expert Database Systems, 69-78, 1986.
Chandrasekaran, B., Generic tasks in knowledge-based reasoning: High-
level building blocks for expert system design, IEEE Expert, 1(3), 23-29, June
1986.
Chaudhuri, S. (ed.), Special issue on databases and the World Wide Web,
Data Engineering Bulletin, pp. 3-52, 21(2), 1998.
Chen, Z., Enhancing database management to knowledge base management:
the role of information retrieval technology, Information Processing and
Management, 30(3) 419-435, 1994.
Dean, T., Allen, J. and Aloimonos, Y., Artificial Intelligence: Theory and
Practice, Benjamin/Cummings, Redwood City, CA, 1995.
Eich, M. (ed.), Special section on mian memory databases, IEEE Transactions
on Knowledge and Data Engineering, 4(6), 507-571, 1992.
Floreskcu, D., Levy, A. and Mendelzon, A., Database techniques for the
World Wide Web: A survey, SIGMOD Record, 27(3), 59-74, Sept. 1998.
Frakes, W. B. and Baeza-Yates, R. (eds.), Information Retrieval: Data
Structures and Algorithms, Prentice-Hall, Englewood Cliffs, NJ, 1992.
Freundlich, Y., Knowledge Bases and Databases: Converging Technologies,
Diverging Interests, IEEE Computer, 23(11), 51-58, 1990.

Garcia-Molina, H.L., Labio, W. J., Wiener, J. L. and Zhuge, Y.,
Distributed and parallel computing issues in data warehousing, Proceedings of
ACM Principles of Distributed Computing Conference, 1999.
Giarratano, J. and Riley, G., Expert Systems: Principles and Programming
(3rd ed.), PWS Publishing Co., Boston, 1998.
Harinarayan, V., Issues in interactive aggregation, Data Eng. Bulletin, 20(1),
12-18, 1997.
Inmon,W. H. Building the Data Warehouse. John Wiley, New York, 1996.
Kimball, R., The Data Warehouse Toolkit, Wiley, New York, 1996.
Korfhage, R., Information Storage and Retrieval, John Wiley, New York,
1997.
McDermott, J., Preliminary steps toward a taxonomy of problem-solving
methods, Chap. 8 in Marcus, S. (ed.), Automating Knowledge Acqusition for
Knowledge Based Systems, pp. 120-146, Kluwer, Boston, 1988.
O'Leary, D. E., Knowledge-management systems: Converting and
connecting, IEEE Intelligent Systems, 30-33, May/June, 1998a.
O'Leary, D. E. Using AI in knowledge management: Knowledge bases and
ontologies, IEEE Intelligent Systems, pp. 34-39, May/June, 1998b.
Ramakrishnan, R., Database Management Systems, WCB McGraw-Hill,
Boston, 1998.
Schank, R. C., Issues for psychology, AI, and education: a review of
Newell's Unified Theories of Cognition, Artificial intelligence, 59(1/2), 375-
388, 1993.
Silberschatz, A., Korth, H. F. and Sudarshan, S., Database System
Concepts (3rd ed.), McGraw-Hill, New York, 1996.
Sparck-Jones, K., Willett, P. and Larson, R. (eds.) , Readings in
Information Retrieval, Morgan Kaufman, San Mateo, CA, 1997.
Swartout, W. and Tate, R. (guest eds.), Ontologies, IEEE Intelligent
Systems & Their Applications, special issue papers appearing in 14(1), 18-54,
14(2), 63-80, 14(3), 73-79, 14(4), 79-85, 1999.
Ullman, D. D. and Widom, J., A First Course in Database Systems, Prentice
Hall, Upper Saddle River, NJ, 1997.
Wiederhold, G., Knowledge and database management, IEEE Computer,
17(1), 63-73, 1984.
Yang, Y. (guest ed.), Intelligent Information Retrieval, IEEE Intelligent
System & Their Applications, 14(4), 30-69, 1999.

Chapter 6

CONCEPTUAL DATA AND KNOWLEDGE
MODELING

6.1 OVERVIEW

 In Chapter 5 we discussed data and information retrieval systems, as well
as knowledge retrieval systems. The discussion given there was based on the
assumption that data and information were already properly stored. Now we
discuss the important issue of how to put data and knowledge into a system.
This process starts with the task of conceptual modeling. The term conceptual
modeling refers to the process of capturing semantics reflected in the design
requirements. Conceptual modeling is the starting point of building agent-
based systems. There are different aspects for different kinds of conceptual
modeling. In the first part of this chapter (Sections 6.2 and 6.3) we discuss
conceptual data modeling, with an emphasis on Entity-Relationship (ER)
modeling and its relationship with object-oriented (OO) approaches. The
remaining part of this chapter is devoted to conceptual knowledge modeling,
as well as a discussion on knowledge representation and reasoning (KRR)
from this perspective. Two specific structured knowledge representation
schemes are discussed, namely, frames and conceptual graphs (along with its
relationship with logic). Finally, we extend our discussion on modeling to a
wider scope. Since users are always an important factor in the integrated
problem solving process involving all parties (including intelligent agents and
human beings), we close this chapter with a brief discussion on the issue of
user modeling.

6.2 ENTITY-RELATIONSHIP DATA MODELING

6.2.1 WHAT IS THE ENTITY-RELATIONSHIP (ER) APPROACH?

The entity-relationship (ER) [Chen 1976] approach provides an effective
way for conceptual modeling of data. (Actually, ER approach goes beyond
database modeling, such as in software engineering, but we will not discuss
this issue here.) The underlying idea is simple: Data can be described in terms
of "things" and their connections. Consequently, there are two kinds of basic
constructs in an ER model: entity sets consists of entities, as well as
relationship sets connecting the entity sets. Both entity sets and relationship
sets can be described by attributes. ER modeling typically makes use of ER
diagrams. An ER diagram (ERD) is the graphical expression of the overall

logical structure of a database. In an ERD, each entity set is represented by a
rectangle, each relationship set is represented by a diamond and is connected
to associated entity sets by lines, and each attribute is represented by an oval.

6.2.2 A SIMPLE EXAMPLE

Consider a university database of student information, the courses offered,
and the courses taken by individual students. Information recorded for
students includes S-ID, name, major, etc. Information recorded for courses
include call numbers, department offering this course, and the section of this
course. For the time being, we will assume a course can have many students
enrolled, but each student can only register for one course. The information
for the date a course is taken is also recorded. Based on this design
requirement, an ERD like Figure 6.1(a) can be developed to capture this mini-
world. Note that an arrow has been used to denote the restriction that each
student can only take one course.

Figure 6.1 (a) An ER diagram

A shorthand form may be more convenient for drawing the ERD. In this
shorthand form, rectangles, diamonds and ovals are replaced by squared
brackets, acute brackets and parenthesis, respectively. (Each weak entity set
will be represented using double squared brackets, like [[child]].) We will
refer this form of ERD as its linear representation. This form is particularly
suitable for small, non-sophisticated ERDs. In the remaining part of this book
we will stay with this form.

Figure 6.1 (b) An ER diagram (in linear notation)

Although the ER approach seems to be simple, there are a lot of design
issues to be considered. For example, we should decide which "things" should
be treated as entity sets. Other issues should be considered including which
attributes should go to the "student" entity set, which should go to the
relationship set "takes," etc.

si

(s-id) (s-name) (major) (date) (c-id, dept, section)
 [student] <take> → [course]

Student Course
Take

sid s-name
major date

c-id dept

section

6.2.3 MAJOR CONSTRUCTS

We now discuss the major constructs involved in ER modeling in more
detail. An entity set (i.e., a strong entity set) is a set of entities of the same type
that share the same properties (or attributes). An entity is a thing or object in
the real world that is distinguishable from all other things. Entity sets do not
need to be disjoint. An entity is represented by a set of attributes.

A relationship set is a set of relationships of the same type. A relationship
is an association among several entities. The degree of a relationship set is
determined by the number of entity sets associated. Typically we have binary
relationship sets, but we may also have n-ary relationship sets. A relationship
set may have its own attributes (just like an entity set). An important aspect of
a relationship set is the mapping constraint (namely, cardinalities):

• one to one (1:1) ←→ . For example, a student can only take one
course and each course can only have one student. (Of course, this
restriction is not realistic.)

• one to many (1:N) ← For example, a student can take many courses,
while each course can have only one student. (Again, not realistic in
our current example.)

• many to one (N:1) → . For example, many students can take one
course, and each course can have many students.

• many to many (M:N) . For example, each student can take one or
more courses and each course may have more than one student. This
is a reasonable assumption in our example.

The function that an entity plays in a relationship is called that entity's role.
For example, a graduate student can play the role of either a student as well as
an instructor.

Both entity sets and relationship sets are described by attributes. There are
different kinds of attributes, such as simple versus composite attributes,
single-valued versus multivalued attributes, null attributes and derived
attributes (such as age being derived by data of birth and today's date). The
collection of attributes is referred to as the schema (as we already discussed
earlier in this chapter).

6.2.4 SOME IMPORTANT CONCEPTS

In relational databases, we have already learned concepts related to keys,
such as candidate key or primary key. These concepts can be extended to
entity-relationship models.

• Keys for entity sets: There are several different types of keys for entity
sets (collection of attributes). They are different to search keys at file
structures level, and are also different to each other.
♦ Superkey: It uniquely identifies an entity in the entity set.
♦ Candidate key: It is the minimal super key (attributes used as

candidate key are usually underlined).
♦ Primary key: It is the designated candidate key.

♦ Foreign key: It is a set of attributes which form the primary key of
another relation.

• Keys for relationship sets: Primary keys for relationship sets are formed
from primary keys of associated entity sets.

• Existence dependency: If the existence of entity x depends on the
existence of entity y, then:
♦ x is existence dependent on y;
♦ Entity y is a dominant entity,
♦ Entity x is a subordinate entity.

• Total versus partial participation of entity set E in relationship set R:
♦ Total participation: every entity in E participates in at least one

relationship in R (closely related to existence dependency).
♦ Partial participation: only some entities in E participates in

relationships in R.
• Weak entity sets: An entity set which does not have sufficient attributes to

form a primary key. For example, the employees' dependents in a
company database are reasonably treated as weak entities, because the
dependents' information is included only because their existence would
affect the benefit of the employees. The discriminator of a weak entity set
is a set of attributes that distinguish among all the entities in the weak
entity set. The primary key of a weak entity set is formed by the primary
key of the strong entity set on which the weak entity set is existence
dependent, plus the weak entity set's discriminator. A portion of an ERD
involving a weak entity set "dependent" is depicted in Figure 6.2, where
"dependent" is a weak entity set. The discriminator of this weak entity set
is "d-first-name," and the primary key of the set "dependent" is the
combination of e-id and d-first-name.

Figure 6.2 An ERD with a weak entity set

6.2.5 DESIGN ISSUES IN ER MODELING

 The following is the general process of developing an ERD:
• Obtain data requirements;
• Entity sets designation;
• Relationship sets designation (refinement of entity sets designation)
Designing an ER diagram could be tricky. The following are some issues that
need to be considered.
• Use an attibute or an entity set to represent an object?

 (e-id, e-first-name, e-last-name) (p-id, dept-name)
 [employee] --- <participate> --- [project]
 || (start-time)
 <<has>>
 ||
 [[dependent]]
 (d-first-name)

• Use an entity set or a relationship set to represent a real world concept?
(Note: The notions of an entity set and a relationship set are not precise.)

• Use binary relationship set or n-ary relationship set?
• Use a strong or weak entity set?
• Use extended ER features?

Readers are referred to [Elmasri and Navathe 1994] for a more detailed
discussion on ER modeling, including a description of the Enhanced-ER
model.

6.2.6 MAPPING ER DIAGRAMS INTO RELATIONS

ERDs can be converted to a form closely related to predicate logic, which is
a relation. The general steps needed for converting an ERD to tabular format
are stated below (an example can be found in Section 6.2.8). After the ERD is
converted to the table format, relational database techniques (as described in
previous chapters) can then be used.
• For strong entity set E:

We represent E by a table with distinct columns; each column
corresponds to one of the attributes of E. Each row corresponds to an
entity of the entity set.

• For weak entity set A owned by strong entity set B:
We represent it by a table with distinct columns; each column
corresponds to one of the attributes of A or attributes of the primary key
of B.

• For relationship set R (R does not link a weak entity set to its owner
strong entity set):
We represent it by a table with distinct columns; each column
corresponds to one of the attributes in primary keys of associated entity
sets or R's own descriptive attributes.

• For many-to-one relationship:
For a N:1 relationship set R from entity set A to entity set B, if there is an
existence dependency of A on B, combine the tables A and R.

• For multivalued attribute M:
We create a table T with a column C that corresponds to M and columns
corresponding to the primary key of the entity set or relationship set of
which M is an attribute.

6.2.7 KEYS IN CONVERTED TABLES

Important to relational database design is the concept of key. We have
already discussed various issues related to keys in Chapter 4. When the ER
approach is used, primary keys and foreign keys in the converted tables can be
determined from the primary keys in the corresponding constructs (entity sets
or relationship sets) in the ERD. Examples for the following definitions can be
found in Section 6.2.8.
Primary keys:

• Entity relation: The primary key of the entity set in ERD becomes the
primary key of the entity relation.

• Relationship relation: The union of the primary keys of the related entity
sets becomes a superkey of the relation. (Note here union refers to put
together all the attributes in both primary keys.)

 Foreign key: An attribute in a relation is a primary key of another relation.

6.2.8 AN EXAMPLE: A BANKING ENTERPRISE

6.2.8.1 Data requirements
We use an example to illustrate ER modeling and its conversion to table

format. The example used here is a banking enterprise, which is similar to the
one discussed in some other books (such as the one in [Silberschatz, Korth
and Sudarshan 1997]). The most important feature of our treatment lies in the
common treatment of knowledge and data. Since a relationship resembles a
predicate, it would be beneficial to use a verb or a noun or an adjective as the
name of a relationship. Also we will use the linear format to represent an
ERD.

The data requirements for a banking enterprise are described below. The
bank is organized into branches. Each branch is located in a particular city,
and identified by a unique name. The assets of each branch are recorded. The
bank offers accounts to customers. For each customer, his or her name, city
and street information is recorded. Accounts can be held by more than one
customer, and a customer can have more than one account. Each account is
assigned a unique account number. The balance of each account is maintained.
The bank also provides loans to customers. For each loan, a unique loan
number is assigned and the amount of loan is maintained.

6.2.8.2 ER Diagram for banking enterprise
The ER diagram can be constructed as shown in Figure 6.3, with primary

keys in entity sets underlined.

Figure 6.3 The banking ER diagram

6.2.8.3 Converting to tables
Applying the conversion method described in the previous section, we

obtain the following tables (each represents a relational schema). Note that
while each entity set is converted to a table, only those relationship sets which
do not involve a 1 to n mapping are converted into tables (otherwise they are

(a-no, bal) (b-name, b-city, assets)
[account] <deposit> � [branch]

| ↑
<own> <approve>
[customer] <borrow> [loan]

(c-name, c-addr, c-city) (l-no, amount)

"absorbed" into one of the associated entity tables). Primary keys are
underscored.

Account relation: a-no, balance, b-name
Branch relation: b-name, b-city, assets
Borrow relation: c-name, l-no
Customer relation: c-name, c-addr, c-city
Loan relation: l-no, amount, b-name
Owns relation: c-name, a-no

Note that relationships "approve" and "deposit" are not converted to tables.
Also note that b-name in both Account relation and Loan relation is a foreign
key, because it is a primary key in Branch relation.

6.2.9 EXTENDED ER FEATURES AND RELATIONSHIP WITH
OBJECT-ORIENTED MODELING

There are some well-known problems of ER modeling which have been
used to lead to more advanced modeling techniques, including extended ER
models and object-oriented models:
• Specialization: For example, in a university database, both instructors and

students are specialization of "persons." Semantically, these two entity
sets should have a closer relationship than relationship with other entity
sets. The original ER modeling technique does not reflect this.

• Generalization: For instance, in the above example, "persons" is the
entity set generalized from instructors and students. Common attributes
such as Social Security Number, first name and last name, can be stored
in the persons entity set. However, the original ER modeling technique
does not support this.

• Aggregation. Another limitation of the ER model is that it is not possible
to express relationships among relationships. For example, in a banking
database, a customer may be both a depositor and a borrower, but
according to the standard ER modeling technique, we have to treat
"deposit" and "loan" as two separate activities.

Efforts have been made to enrich the ER model. However, most extensions
are much less well known than the original ER modeling approach. In
addition, these extensions have been overshadowed by object-oriented data
modeling approaches (which have become increasingly popular). Loosely
speaking, an object corresponds to an entity in the ER model. The object-
oriented paradigm is based on encapsulating data and code related to an object
into a single unit. Conceptually, an object communicates with the rest of the
system by sending messages to invoke various methods. Because of this
feature, object-oriented data modeling has a behavior part (in addition to the
conventional structure part), with inheritance a strength of this kind of
modeling. We will take a look at the issue of inheritance in Section 6.6 when
we discuss frame systems.

One criticism of the ER approach is its lack of the behavior part (which is
supported by object-oriented modeling approaches). Nevertheless, the

simplicity of ER modeling makes it continuously a favorable tool in many
applications.

6.3 REMARK ON LEGACY DATA MODELS

Historically, Entity-Relationship model was introduced to unify three
existing logical models: relational, network, and hierarchical. We have studied
relational data model in Chapter 3. In this section, a brief sketch of the other
two models is provided.

Roughly speaking, the network data model is the ER model with all
relationships restricted to be binary, many-one relationships. Entity sets are
represented directly by logical record types with attributes as their fields.
Binary, many-one relationships are kept; arbitrary relationships should be
converted by creating new logical record types. We can use a simple directed
graph model for data. Retrieving data requires users to write queries to express
how the links are navigated.

The hierarchical data model can be considered as a special case of the
network model. A hierarchy is a network that is a collection of trees in which
all links point in the direction from child to parent.

The two query languages for network model and hierarchical model are
sometimes considered as "object-oriented" because these languages support
object identity, and thus present significant problems and significant
advantages when compared with relational languages [Ullman 1989]. Queries
in object-oriented data model may follow similar considerations as the
network model, such as specifying navigation path.

Since object-oriented data model may be considered as the "current" data
model, relational database systems sometimes are also considered as "legacy"
systems. But in this book, we will not take this perspective. In fact, building
data warehouses largely depends on relational data modeling techniques.

There are some reasons of studying legacy data models, including the
following:
• Data re-engineering: In some cases, we have to re-implement legacy

systems. In order to understand the data modeled in these systems, we
have to learn legacy systems.

• Building data warehouses: It has been increasingly popular to build data
warehouses for decision support queries. The source data used for
building a data warehouse may be acquired from legacy databases. A
good understanding of legacy systems is thus critical for the success of
building data warehouses.

• Object-oriented implementation: In addition, as already implied in the
brief discussion provided earlier in this chapter, legacy systems may shed
lights on learning object-oriented data modeling techniques.

6.4 KNOWLEDGE MODELING FOR KNOWLEDGE
REPRESENTATION

Just like data modeling is concerned with how to conceptually view the
data, knowledge modeling is concerned with how to conceptually view the
knowledge to be represented. Of course, there is no "clear up" between data
modeling and knowledge modeling. For example, while relational model
captures the logical representation of data, an ER diagram, which roughly
represents the schema of the corresponding relational model, can also be
viewed as a primitive version of knowledge modeling. In fact, as we can see
from the remaining part of this chapter, the underlying philosophy used in ER
approach, namely, modeling the world using nodes and their connections, has
been adopted and enhanced in modeling structural aspects of human
knowledge.

Knowledge modeling serves as an intermediate step for knowledge
representation and reasoning, because it is preferable to have the contents of
the knowledge captured before the exact format of representation is
determined. In this sense, knowledge modeling versus knowledge
representation resembles abstract data types versus data structures, or
conceptualization versus implementation. For example, we can use graphs or
flow charts to acquire the knowledge needed for problem solving without
considering how the acquired knowledge will be represented. At this stage, we
are doing knowledge modeling. We can then further consider how to
implement the acquired knowledge using production rules or other
representation schemes (whichever is appropriate). Therefore, using
knowledge modeling approach for building knowledge-based systems may be
carried out through two steps: (a) capture the contents of knowledge (which
can be assisted by knowledge modeling tools) and (b) select the appropriate
knowledge representation scheme and convert the captured knowledge into
that scheme. An example of using knowledge modeling to build a TV-
troubleshooting expert system is described in [Lockwood and Chen 1994].

Knowledge modeling is important, because knowledge acquisition (which
is crucial in knowledge engineering, as discussed in Chapter 5) is a modeling
process, not merely an exercise in "expertise transfer" or "knowledge
extraction." Various tools have been developed for knowledge modeling [Ford
and Bradshaw 1993]. However, knowledge is at a higher conceptual level than
data; unlike data modeling, so far there is no general consensus on how
knowledge modeling should be. Since considerations behind structured
knowledge representation schemes largely reflect concerns related to
knowledge modeling, instead of focusing on knowledge modeling itself, a
discussion on structured knowledge will follow.

6.5 STRUCTURED KNOWLEDGE REPRESENTATION

6.5.1 SOME IMPORTANT ISSUES INVOLVED IN KNOWLEDGE
REPRESENTATION AND REASONING

Knowledge representation and reasoning is not a simple task. Many factors
contribute to this complexity. Here we just give several examples to illustrate
this point.

One factor is granularity: We have already learned several knowledge
representation schemes. For both FOPL and production rules, they represent
knowledge in small pieces, and thus support modularity and are easy to revise.
However, they also suffer some problems such as the lack of "global"
perspective and a leaning to cause inconsistency. In many applications,
knowledge should be represented in a more structured manner. For example,
pieces of information related to the same customer are preferably grouped
together. Structured knowledge representation schemes (such as associative
networks, frames and conceptual graphs) have been developed for this
purpose. Note that the term "structured knowledge" used here is also called
aggregated knowledge, but we will reserve the word "aggregation" to
summary data (such as sum, average, etc.) as used in database management
systems (discussed in Chapter 5 and to be further discussed in Chapter 11).
Note also predicate expressions and productions rules themselves may also be
called as "structured knowledge," mainly from researchers in neural network
community, because they are more structured than subsymbolic
representation, and can be obtained from machine learning algorithms applied
on neural networks. However, in this book, we will only use the term
"structured knowledge" in the sense described above.

 Another issue is nonmonotonic reasoning. We briefly discussed this issue
in the context of logic. However, there are other important aspects we have
not addressed. A specific problem in nonmonotonic reasoning is the frame
problem, which is concerned with how to represent change. In order to
understand the importance of this problem in knowledge representation and
reasoning, let us consider the following two scenarios. Suppose we have three
apples on the table, and three birds in a tree. Now I have just taken one apple
from the table and eaten it. I also have also used a gun to shoot a bird. Now
consider the following retrieval problems (both require aggregating answers):
How many apples remain on the table? Apparently it is two. How many birds
on the tree? None -- because the other two birds are gone! Frame relations are
rules to tell what predicates describing a state are not changed by rule
applications and are thus carried over intact to help describe the new state of
the world. Truth maintenance systems have been developed to deal with
nonmonotonic reasoning in knowledge-based systems. Their task is to check
the validity of knowledge stored in the knowledge base.

There are several general issues of knowledge representation and
structured knowledge representation schemes. Knowledge representation
schemes serve the role of "languages" at the symbol level. Desired features of

KR languages include the ability to do the following [Luger and Stubblefield
1998]:

a. Handle qualitative knowledge;
b. Allow new knowledge to be inferred from a set of facts and rules;
c. Allow representation of general principles as well as specific situations;
d. Capture complex semantic meaning; and
e. Allow for meta-level reasoning (see Chapter 14 for a brief discussion).

6.5.2 BASICS OF STRUCTURED KNOWLEDGE
REPRESENTATION SCHEMES

To represent structured knowledge, we can represent knowledge as a graph,
with nodes corresponding to facts or concepts, and arcs corresponding to
relations or associates between concepts. Both nodes and links are usually
labeled. Using network representations, we view knowledge as organized
using explicit links or associations between objects in KB. There have been
many proposals, focusing on either structures or actions, but for a long time,
there has been a lack of "standard" network representation. However, recently,
conceptual graphs have emerged as a potential candidate for this
standardization.

In the remaining part of this chapter, we discuss frame systems and
conceptual graphs. Both of these approaches can be considered as extensions
of data modeling using an ER approach. Roughly speaking, frame systems put
emphasis on extending the entity types (taking considerations as discussed in
Section 6.2.9) to meet the requirements in object-oriented modeling, while
conceptual graphs tend to represent the complexity of the world by extending
the relationship types.

6.6 FRAME SYSTEMS

6.6.1 BASICS OF FRAMES

A frame is based on the metaphor of a single frame in a film. A frame
system may be viewed as an alternative to network representations. We
discuss frame systems through two levels: first individual frames, and then
frame systems.

Frame contents (slots) include: an identifier; relationship with other frames;
descriptors of requirements for frame match; procedural information; default
information; new instance information (unspecified at beginning) and others.
Examples of frames will be shown in the next section when the issue of
inheritance is discussed.

Frame systems extend semantic networks in a number of important ways.
They provide a much clearer picture than semantic networks themselves.
Frames add to the power of semantic nets by allowing complex objects to be
represented as a single frame, rather than as a large network structure.

6.6.2 CLASSES, SUBCLASSES AND INSTANCES

Parallel to the development of frame languages has been the development
of object-oriented programming languages (OOPL). Due to the popularity of
object-oriented concepts, in this section we present some key concepts in
frame systems by connecting them with object-orientation. Frame systems and
OOPLs are quite similar, differing primarily in emphasis. An object-oriented
programming language is viewed as a practical programming language able to
compete with standard programming languages, whereas a frame system
representation tends to be either a research tool or a language to be used in the
construction of intelligent information systems and to facilitate reasoning in
these systems.

Since object-oriented paradigm has gained much popularity, here we will
only summarize In order to fully support the needs of object-oriented
paradigm, a programming language should support capabilities of
encapsulation, polymorphism and inheritance. Object-oriented encapsulation
is unique in that it combines both data items and the methods or procedures
used for their manipulation into a single structure, called a class. A class is a
set of object instances with shared features. Methods or procedures
characterize the behavior of a class. A method is polymorphic if it has many
different behaviors, depending on the types of its arguments. Associated with
the concept of the class is inheritance, which is a mechanism for supporting
class abstraction in a programming language, as well as in a knowledge
representation scheme. A class can inherit properties from its superclass(es);
these properties, along with the properties owned by this class itself, can be
inherited by its subclasses.

Frames have many similarities with classes, but also some differences. For
example, both classes and instances can be represented by frames and the
difference is not reflected in the definition of frames. In the following, we will
examine issues related in inheritance in frame systems.

6.6.3 INHERITANCE, MULTI-LEVEL AND MULTIPLE
INHERITANCE

6.6.3.1 Inheritance in frame systems
Inheritance allows a frame to inherit properties from its parent. Frames can

be connected through class-subclass relationships to form a frame system. As
indicated earlier, the notion of frame does not distinguish its use of a frame as
a class or an instance. In this context, we will assume that inheritance will
occur between classes, although we do allow that instances inherit properties
from the class they belong to. One important thing we should know about
inheritance is that it is not mandatory; in fact, a subclass (or an instance) can
override some of the properties of the class it belongs to. This is advantageous
in many real-world situations, where we may not be able to assign all the
initial values of properties for a new subclass or instance. We may set up
default values for these properties, because these values may be overridden
later. Note that the overriding feature involved in inheritance gives frame

systems the power of nonmonotonic reasoning (see Chapter 3). The Prolog
code for implementing a frame system will be provided in Chapter 8.

6.6.3.2 Multiple inheritance
The definition of inheritance allows a property of a class to be inherited by

its subclasses, then the subclasses of the subclasses, and so on. In general, we
have multiple-level of inheritance. On the other hand, subclass may not
necessarily inherit all the properties from the same parent class; in other
words, a subclass may have several classes as its parents. In this case, we have
a multiple-inheritance. It is important to keep in mind that multiple
inheritance is not multiple-level of inheritance.

A sample frame system is depicted in Figure 6.4 on the next page. To
distinguish an object instance from a class, we will use a double-bordered box
indicate an instance. In this figure, the pick-up class inherits the property
"number of wheels" with value 2 to 10 from class "vehicle" through multi-
level inheritance. Note also the pick-up has two parents "car" and "truck," so
there is a multiple-inheritance as well. Note that in case there is more than one
parent, inconsistency may occur. For example, the values for the property
"passenger" are different from car and truck, so there is a need to assign the
value of the property "passenger" for pick-ups.

6.7 CONCEPTUAL GRAPHS

6.7.1 WHAT IS A CONCEPTUAL GRAPH?

In this section, we discuss conceptual graphs (CGs) in the context of
conceptual modeling. It is important to note, however, that some other factors
had impact on CG, such as Logic, Natural Language Processing (NLP), to
name a few.

A CG is a finite, connected, bipartite graph. The nodes of the graph are
either concepts or conceptual relations; each node is connected to the other
kind of node. The following are some basic definitions:
• Concept node: It is represented as a box. A concept can be either a

concrete or abstract entity. A concept node connects to conceptual
relations. A concept node may represent an individual or a type.

• Conceptual relation: It is represented as ellipses connecting concepts and
plays the role of a labeled arc. Although usually it connects two concept
node (and is thus binary), it could be an n-ary relation.

Note that CGs do not use labeled arcs; instead the conceptual relation nodes
represent relations between concepts.

There is an interesting connection between conceptual graphs (CGs) and
ERDs. Historically, CGs have outgrown from ERD and extended its power of
data modeling to knowledge representation. Consequently, we may view an
ERD as a restricted form of CG and the linear form developed for CGs can
thus be borrowed. We may note that concepts in CG resemble concepts in

ERDs while conceptual relations resemble relationship sets. However, the
similarity stops here, because the CGs do not have the stored data associated
with concepts and conceptual relation nodes. Therefore, the similarity between
CGs and ERDs does not go beyond the data schema level.

6.8 CONCEPTUAL GRAPHS

Figure 6.4 A frame system

Vehicle
of wheels: 2-10
function: moving
(Other slots)

Automobile
Engine: yes
of wheels: 4-10
(Other slots)

Car
Passenger: yes
Cargo: no
Size: small
(Other slots)

Truck
Passenger: no
Cargo: yes
Size:{medium, big}
(Other slots)

Pick-up
Passenger: yes
Cargo: yes
Size: medium
(Other slots)

Bicycle
Engine: no
of wheels: 2
(Other slots)

My pick-up
Model: ...
Year:…
Color:…
(Other slots)

6.7.2 USING LINEAR FORM TO REPRESENT CONCEPTUAL
GRAPHS

Let us consider the following example: "Tom donated a computer to
Aksarben College." The conceptual graph is shown in Figure 6.5(a).

Figure 6.5(a) A conceptual graph

Similar to the case in an ER diagram, the linear form of conceptual graph is
easier to present as text. A concept node is represented by a pair of squared
brackets while a conceptual relation is represented by a pair of parentheses.
The linear form equivalent to the above conceptual graph is depicted in Figure
6.5(b).

Figure 6.5 (b) A conceptual graph in linear form

How to construct a conceptual graph? Although there are no simple rules, in
many cases conceptual graphs can be constructed by organizing concepts and
conceptual relations around some "key" activities (which are usually verbs).
For instance, in the above example, the conceptual graph is constructed
around the verb "donate" (which is a conceptual node), and other conceptual
nodes, such as person, computer and college, reflect different aspects of the
activity "donate."

6.7.3 OPERATIONS

The following operations defined on CGs can be viewed as rules, but they
are not inference rules:
• Simplify: It allows deletion of duplicated relations.
• Copy: This is the operation for duplicating a CG.
• Restriction: It allows concept nodes in a graph to be replaced by a node

representing their specialization. A type label is replaced by an individual
or subtype; note the similarity with object-oriented considerations.

agent donateperson:tom

recipientcollege:
aksarben

object

computer

 [person:tom] ← (agent) ← [donate] → (object) → [computer]

 [college:aksarben] ← (recipient) ←

• Join: It combines two CGs sharing some concept node into one CG. This
operation may be done through restriction. This operation can be
compared to natural join in relational algebra (Chapter 3).

Now consider a conceptual graph in linear format:
 [ibmPC] → (price) → [$2000]

Suppose ibmPC is a subtype of "computer;" then this graph can be joined
with the one depicted in Figure 6.5(b), since they share a common concept
node "ibmPC." The linear form of the result after join is shown in Figure
6.5(c).

Figure 6.5 (c) A conceptual graph after join

The combined results indicates that Tom donated to Arksarben College an
IBM PC which is worth $2000.

6.7.4 LOGIC-RELATED ASPECTS

6.7.4.1 Propositional node
Conceptual graphs employ propositional nodes to handle issues in logic. A

propositinal node is a kind of high level node -- that is, a node itself may be a
graph. For example, consider the statement "John believes that Tom donated a
computer to Aksarben College." Here "believes" is a relation that takes a
proposition as an argument. To deal with such needs, conceptual graphs
include a concept type called proposition that takes a set of conceptual graphs
as its referent and allows us to define relations involving propositions. A
propositional concept is indicated as a box that contains another conceptual
graph. These proposition concepts may be used with appropriate relations to
represent knowledge about propositions. The statement "John believes that
Tom donated a computer to Aksarben College" can thus be represented in the
form shown in Figure 6.6.

Figure 6.6 A conceptual graph with propositional node

[person:tom] ← (agent) ← [donate] → (object) → [ibmPC] → (price) →[$2000]

 → (recipient) → [college:aksarben]

[person: john] ←(experiencer)←[believe]

 ↓
 (object)
 ↓

(conceptual graph
shown in Figure
6.5(b))

• Negation. Propositional nodes allow us to express negation. For example,
if we want to indicate "IBM PC is not priced at $2000," Figure 6.7
illustrates how this can be done.

Figure 6.7 Propositional node with negation

• Quantifier. When we discussed basics of Prolog in Chapter 3, we pointed
out although Prolog does not use quantifiers explicitly, variables
appearing in both head and body are universally quantified while
variables appearing in body alone are existentially quantified. Conceptual
graphs do not explicitly use quantifiers either. In fact, it has been
established that variables in conceptual graphs are existentially quantified.
So what should we do if we want to use universal quantifiers? Since
negation can be handled by using propositional nodes, by utilizing
deMorgan's law as discussed in Chapter 3, we should be able to express
variables which are universally quantified.

• Modal logic. Furthermore, conceptual graphs with propositional nodes
may be used to express the modal concepts of knowledge and belief. For
a brief discussion on modal logic, see [Turner, 1984].

6.7.4.2 Inference rules
It is important to point out that the operations discussed above are not

inference rules. For example, the join operation simply combine relevant
information together; the result is simply a combination of facts rather than
inference. However, inference rules do exist, as shown below. We also use
examples to show how inference can be carried out (we assume u and v are
two conceptual graphs). Our presentation follows [Patterson 1990]. For more
detailed discussion on conceptual graph inference rules, please see [Sowa
1984].
• Erasure. Any conceptual graph enclosed by an even number of negations

may be erased. Suppose w is a conceptual graph, it can be erased from the
consequent of an implication ¬[u ¬ [v]] to derive . ¬[u w ¬ [v]]

• Insertion. Any conceptual graph may be inserted into another graph
context which is enclosed by an odd number of negations. Suppose w is a
conceptual graph, it can be inserted into the consequent of an implication
¬[u ¬[v w]] to derive ¬[u ¬ [v]].

• Iteration. A copy of any conceptual graph C may be inserted into a graph
context in which C occurs or in which C is dominated by another concept.

• De-iteration. Any conceptual graph which could be the result of iteration
may be erased from a conceptual graph context.

(neg)

[ibmPC] → (price) → [$2000]

• Double negation. A double negation may be erased or drawn before any
conceptual graph or set of graphs.

An interesting aspect is that de-iteration and double negation are equivalent
to modus pones. That is, given p and ¬[p ¬ [q]], de-iternation permits erasure
of p inside the first bracket to get ¬ [¬ [q]]. Double negation then permits
erasure of ¬ [¬] to obtain the final result q.

6.7.4.3 Converting to predicate logic
Conceptual graphs are equivalent to predicate calculus in their expressive

power. There is a straightforward mapping from conceptual graphs into
predicate calculus notation. The following is an algorithm for converting a
conceptual graph g into a predicate calculus expression. (Our presentation
follows [Luger and Stubblefield 1998].)

1. Assign a unique variable to each of the n generic concepts in g.
2. Assign a unique constant to each individual concept in g.
3. Represent each concept node by a unary predicate with the same

name as the type of that node and with the variable or constant
assigned in step 1 or 2 as its argument.

4 . Represent each n-ary conceptual relation in g as an n-ary
predicate whose name is the same as the relation. Let each
argument of the predicate be the variable or constant assigned to
the corresponding concept node linked to that relation (the order
may follow the direction of the arrows).

5. Take the conjunction of all atomic sentences formed in steps 3
and 4. Attach an existential quantifier to each variable.

For example, the sample conceptual graph can be converted to logic as
follows.

1. Generic concepts are "donate" and "computer." We assign X and
Y to these two concepts, respectively.

2. Individual concepts are "person" and "college." We assign the
two constants "tom" and "aksarben" to these two concepts,
respectively.

3. Represent concept nodes as follows:
donate(X)
computer(Y)
person(tom)
college(aksarben)

4. Represent conceptual relation as following:
agent(X, tom)
object(X,Y)
recipient(X, aksarben)

5. Take the conjunction and attach the quantifier, we obtain the
following result:

∃X ∃Y (donate(X) ∧ computer(Y) ∧ person(tom) ∧
college(aksarben) ∧ agent(X , tom) ∧ object(X , Y) ∧
recipient(X, aksarben))

6.7.5 REMARKS ON SYNERGY OF FRAME SYSTEMS,
CONCEPTUAL GRAPHS AND OBJECT ORIENTATION

We summarize our discussion on conceptual graphs (and frame systems) by
providing the following remarks on object orientation. Historically, the
development of frame systems closely parallel object-oriented programming.
(Note that the term frame used here is not necessarily closely related to the
term frame as in the frame problem.) Roughly speaking, frame systems are
more appropriate in representing structures while conceptual graphs are more
appropriate in representing actions (as well as in natural language
representation). The knowledge represented by frame systems may also be
represented by a conceptual graph (and vice versa), but the frame system
representation may be more appropriate.

In the previous section we have already discussed the close relationship
between frame systems and object oriented approaches. We have just
mentioned the relationship between frame systems and conceptual queries.
We now point out considerable similarity is also encountered between the
object-oriented formalism and the conceptual graph formalism. There seems
to be a one-to-one relationship between the notion of class in object
orientation and the notion of type in conceptual graphs.

6.8 USER MODELING AND FLEXIBLE INFERENCE
CONTROL

So far in this chapter we have examined various issues related to data
modeling and knowledge modeling. Intelligent agents and knowledge workers
share the same problem-solving environment which is modeled by using the
discussed techniques. It is important to note, however, that knowledge
workers and other human users are also an integrated part of this environment.
This consideration leads us to take a brief look on user modeling from the
perspective of computer-user symbiosis -- a desirable environment for
decision support. In the following, we briefly discuss flexible inference
control from the perspective of user modeling, and introduce some important
terminology.

There is a need for more flexible styles of inference and control over the
strategies used for guiding the order of inferences in knowledge-based
systems. One choice is to attach a scheduler in inference engine that enables
explicit decisions to be made about which actions are to be taken (for
example, which rules to apply, whether to use forward or backward chaining,
and so on). The main consideration is to provide flexible inference control to

reduce the work of search in knowledge bases. We briefly examine two
application areas.

 There are some common considerations behind real-time expert systems.
In order to provide timely response, most approaches have imposed a
restricted manner of searching, namely, to restrict the portion of knowledge
base to be searched. The difference is only in how to get this done. In the
designated inference engine approach, each inference engine only processes
a particular kind of data, so that only part of the knowledge base will be
searched by a particular inference engine. Some other approaches rely on
meta-level reasoning and change of focus in searching. The term "meta-level
inference" means "inference performed at one level is concerned about
another level." To assure flexibility, some degree of domain-dependent
control has also been introduced. A discussion on meta-level inference
control can be found in [Chen 1993a], and a related issue on participatory
design can be found in [Chen 1993b].

We now give a brief remark on user environments, user modeling, system
adaptability and perturbation models. The four items mentioned here are all
concerned with the role of users in flexible inference control, but each has its
unique focus. For example, the flexible inference control may be needed in
different circumstances or environments in which users use the system (which
is referred to as user environments). Flexible inference control is also justified
from the perspective of different user groups of user models. This discussion
leads to the issue of system adaptability.

Another interesting concept is the perturbation model. According to the
theory of perturbation models, each user is assumed to have a mental model
similar to the domain model (the "true" model of the system), differing only
in certain perturbations to the domain model. To support such kind of system
adaptability, flexible inference control is needed. A more radical approach of
flexible inference control requires the user's participation of reasoning. A
brief discussion on this issue can be found in Chapter 14.

SUMMARY

In this chapter we have covered a wide-range of issues related to data and
knowledge modeling. The materials presented in Chapters 4, 5 and 6 are
closely related to each other. When we build and access an information
system, we take the following order: conceptual modeling for data/knowledge
representation, design of the system, implementation and retrieval. In this
chapter we discussed issues related to conceptual modeling. In addition, we
pointed out the importance of user modeling in the computer-human
symbiosis.

SELF-EXAMINATION QUESTIONS
1. A travel agency wants to keep tracking its customers (including those

who just have inquires only). For people who are travelling together, a
group number is assigned. (A person who travels alone will be considered
as a group.) For each traveler in the group, his or her name, address and
occupation are recorded. For each travel, the tour identifier, the place of
departure, the destination, and the departure date are recorded. Draw an
ER diagram for the travel agency database.

2 . Suppose we want to represent the knowledge of travel agency (as
described in Problem 1) using the conceptual graph approach. Compare
the resulting representation with the ERD obtained in Problem 1.

3 . In Problem 2, instead of using a conceptual graph, suppose a frame
system is used. Do you think this is a better choice? Give your comments.

4. Draw a conceptual graph indicating "All basketball players are tall."

REFERENCES

Chen, P., The Entity Relationship Model -- Toward a unified view of data,
ACM Transactions on Database systems, 1(1), 9-36, 1976.
Chen, Z., User modeling for flexible inference control and its relevance to
decision making in economics and management, Computational Economics,
6, 163-175, 1993a.
Chen, Z., From participatory design to participatory problem solving, AI &
Society, 7(3), 238-247, 1993b.
Elmasri, R. and Navathe, S. B., Fundamentals of Database Systems (2nd ed.)
Redwood City, CA: Benjamin/Cummings, 1994.
Ford, K. M. and Bradshaw, J. M., Introduction: Knowledge acquisition as
modeling, International Journal of Intelligent Systems, 8(1), 1-7, 1993.
Lockwood, S. and Chen, Z., Modeling experts' decision making using
knowledge charts, Information and Decision Technologies, 19, 311-319, 1994.
Luger, G. F. and Stubblefield, W. A., Artificial Intelligence: Structures and
Strategies for Complex Problem Solving (3rd ed.), Addison-Wesley Longman,
Harlow, England, 1998.
Patterson, D. W., Introduction to Artificial Intelligence & Expert Systems,
Prentice Hall, Englewood Cliffs, NJ, 1990.
Silberschatz, A., Korth, H. F. and Sudarshan, S., Database System
Concepts (3rd ed.), McGraw Hill, New York, 1998.
Sowa, J. F, Conceptual structures: information processing in mind and
Machine, Addison-Wesley, Reading, MA, 1984.
Turner, R., Logics for artificial intelligence, Chichester: E. Horwood, 1984.
Ullman, J., Principles of database and knowledge-base systems (Vols I and
II), Computer Science Press, Rockville, MD, 1989.

Chapter 7

REASONING AS EXTENDED RETRIEVAL

7.1 OVERVIEW

In the last two chapters we discussed different kinds of retrieval systems.
As already indicated earlier, the purpose of discussing them in parallel is
aimed at integrated use of these systems for decision support. We have also
noted that retrieval in knowledge-based systems is different from data
retrieval, because the former is actually a reasoning process. In this chapter we
continue to examine the relationship between retrieval and reasoning, but from
a different perspective. Our emphasis is on the boundary between these two.
The interplay between knowledge reasoning and data retrieval can be
achieved by viewing retrieval as an extreme of reasoning and vice versa. We
start with a brief review on several cases of this blurred boundary. Analogical
reasoning is used as an example to illustrate the connection between retrieval
and reasoning. Much of the rest of this chapter is devoted to a computer model
(called the COGMIR model) which illustrates the concept of reasoning as
extended retrieval.

7.2 BEYOND EXACT RETRIEVAL

7.2.1 SOME FORMS OF NON-EXACT RETRIEVAL

The various kinds of retrieval systems discussed in the last two chapters can
be characterized as exact retrieval, because the answers produced in these
systems are either previously stored (in the cases of database and information
retrieval) or derived on demand based on what was stored (in the case of
knowledge retrieval). However, there are many situations where retrieval
should be handled in a more flexible manner. If there is no exact match to a
user's query, an approximate answer may be better than no answer at all. In
addition, as we will see soon, non-exact, or approximate answers may have
some other interesting aspects which exact retrieval may not possesses. The
tricky thing here is that the word "approximate" may have different meanings.
In the remaining part of this section, we provide several examples to illustrate
what the non-exact retrieval means and what the advantages are.

We start with fuzzy queries in databases. Fuzzy set theory will be
discussed in later chapters, and here we just want to raise questions instead of
solving them. Roughly speaking, fuzzy set theory has been developed to deal
with vagueness. A fuzzy query interface to a relational database allows giving
fuzzy terms as values for the attributes, which are not stored in the relational
database. An example of such a query is to retrieve company names which
have made large profit in the first quarter of 1999. In this query, "large profit"
is a fuzzy concept, because profits are usually stored in numerical numbers.
Another approach in fuzzy information retrieval is to build fuzzy databases.
There are several different approaches toward creating fuzzy databases, such
as:

(a) The fuzzy database as an extension to a relational database.
(b) Possibility-distribution relational databases.
(c) Modular fuzzy databases, which consists of three parts: (1) the

value database which is same as (b); (2) the explanation
database, which contains the definition of the fuzzy terms, and is
subject to update depending on the particular applications; and
(3) conversion rules for processing modifiers and qualifiers.

There are many other forms of non-exact retrieval, and some of them
involve the use of analogical reasoning. Analogical reasoning is pervasive in
human reasoning. Briefly, analogical reasoning assumes that if two situations
are known to be similar in some respects, it is likely that they will be similar
in others. So if two brands of CD boom boxes have the same quality and are
made in places with cheap labor, you may expect they should have similar
price. Analogical reasoning has been studied extensively by computer
scientists for many years. For example, the Copycat project (by Douglas
Hofstadter and his research group [Hofstadter 1995]) is a computer program
intended to be able to discover insightful analogies in a psychologically
realistic manner. This research is a continuation of Hofstadter's original
research goals set up during the late 1970's, namely, to uncover the secrets of
creativity, and to uncover the secrets of consciousness, by modeling both
phenomena on a computer.

Analogical reasoning can play an interesting role in non-exact retrieval, and
here is a simple example. Suppose a relational database has information for
average housing prices for a number of selected cities in the United States.
Now a user wants to know the average housing price in Omaha but it is not
available. A retrieval system with analogical reasoning ability may suggest the
user try, say, Lincoln or Wichita. Here is why: Lincoln is close to Omaha and
is in the same state of Nebraska, so their property values should be similar.
And why Wichita? Because just like Omaha, it is also located in the heartland
of the country, and it has the similar size of Omaha. Analogical reasoning is
also useful in text mining, where analogy is used for guiding meta-data search
[Soto 1998]. As a real-world example, according to CBS Morning Business
Report (Jan. 18, 1999), Robert Morrow has 37 patterns for solving vibration
problems in engineering. He has utilized his expertise to predict vibration in
market with great success.

Due to the importance of analogical reasoning for approximate retrieval, in
the next subsection we provide a brief discussion on analogical reasoning.

7.2.2 BASICS OF ANALOGICAL REASONING

According to the popular computational model of analogy [Gentner 1983],
the two analogs involved in analogical reasoning are referred to as the source
and the target. The source of an analogy is a problem solution, example, or
theory that is relatively well understood. The target is only partly known.
Analogy constructs a mapping between corresponding elements of the target
and the source. Analogical inferences extend this mapping to unknown or
missing elements of the target. Note that the source and the target are usually
in different knowledge domains. For example, consider the "electricity is like
water" analogy. Here "water" is the source, which is in the domain, say, of
hydrodynamics; and "electricity" is the target, which is in the domain, say, of
electrodynamics. Since electricity was a new concept in the 19th century, the
knowledge of water and hydrodynamics had greatly helped human beings to
understand this new concept. For example, if we know that this analogy maps
switches onto valves, amperage onto quantity of flow, and voltage onto water
pressure, we may reasonably infer that there should be some thing similar to
the capacity (i.e., the cross-sectional area) of a water pipe; this could lead to
an understanding of electrical resistance [Luger and Stubblefield, 1998].

We will get back to the issue of relationship between retrieval and
reasoning, and discuss the role of analogical reasoning in this exploration. But
before we leave, we give a brief remark on two related reasoning or learning
approaches.
1) Case-based reasoning. In order to solve problems or answer questions

using analogical reasoning, one important issue is how to effectively and
efficiently retrieve source analogs. Case-based reasoning (CBR) is
closely related to analogical reasoning (and can be used in combination
with analogical reasoning) because it employs an explicit knowledge of
problem solutions (referred to as cases) to address new problem-solving
situations. Therefore, CBR provides an effective way to retrieve solutions
of previously solved problems, and to adapt this solution to the current
problem by mapping the old solution to a new one. For more detail of
CBR, please see [Kolodner 1993].

2) Explanation-based learning. Analogical reasoning can be considered as a
species of single instance induction. In contrast, explanation-based
learning (EBL) also performs learning based on a training example, but
uses deductive method. EBL uses an explicitly represented domain theory
to construct an explanation of a training example, usually a proof that the
example logically follows from the theory. By generalizing from the
explanation of the instance, rather than from the instance itself, EBL
organizes training data into a systematic and coherent structure.

7.3 REASONING AS QUERY-INVOKED MEMORY
RE-ORGANIZATION

7.3.1 REASONING AS EXTENDED RETRIEVAL

In this section we describe a computer model based on the notion of
reasoning as extended retrieval. The underlying philosophy of this exploration
is based on the following observation given by [Frisch and Allen 1982].
Knowledge retrieval must respect the semantics of the representation language
and is therefore inference. A query is a request for the retriever to attempt to
infer a specified sentence of the representation language. The knowledge base
module should perform only those inferences for which it has adequate control
knowledge to perform efficiently. Knowledge retrieval is thus a limited form
of inference operating on the stored facts. We should note that although
viewing retrieval as limited inference is important, it is mainly a performance
issue regarding computer implementation. The inverse side of this statement is
equally important, which is concerned with the notion of viewing inference as
an extension of retrieval. In fact, it reveals that when retrieval goes beyond a
certain threshold, it may become reasoning. In the following, we examine this
model and provide examples on how it works. We also examine the role of
memory organization in the integrated task of retrieval and reasoning.

7.3.2 STRUCTURE MAPPING FOR SUGGESTION-GENERATION

Research work has been conducted to support analogical problem solving
or achieve creativity support systems through computerized metaphor
generation. In the following, we describe a model as well as an experimental
system (both will be referred as COGMIR, which stands for a Cognitive
Model for Information Retrieval) [Chen 1996].

This model deals with storage and retrieval short scientific documents
written in restricted English defined by simple grammar. The model consists
of the following components. There is a document space (or document base)
D, which is the conceptual place to store the documents. There is also a
knowledge space (or knowledge base) K (consisting of nodes connected by
links) which is the actual place to store the knowledge converted from the
documents. Each acquired document is assigned a unique sequential identifier,
is converted to its internal form (called document stem) and then stored in a
global knowledge base. Each document stem occupies a certain area in the
knowledge base; each area is confined by its own boundary. A system
component called document description list (or keyword list) L identifies the
boundaries of the document stems. The system also consists of a conceptual
memory, which is a hierarchically structured thesaurus used for indexing of
documents. Finally, the system consists of a set of mapping functions M
between various system components. In summary, the COGMIR model
consists of the following basic components:

D - Document base (also called document space)
K - Knowledge base (also called knowledge space)
C - Conceptual memory (extension of indexing by combining a
hierarchical thesaurus)
L - Document description list
Q - Queries

This computational model provides dual modes for dealing with queries. If
information is available to answer the user's request (in terms of keywords), a
document (or a fact consisting of portions of several documents) is
reconstructed from its internal form in the knowledge base (called document
stem), and presented in the text format to the user. This is the regular mode. In
case the requested information is not available, the user may use the analogy
mode to ask the system to generate a document using analogical reasoning.
This generated document may serve as a suggestion or an advice to the user.
One option to consider here is to map the keywords in the query list submitted
by the user to another list. Since both the document description list and the
query description list consist of objects, if a suggestion is to be generated
using analogy reasoning, it has to be done by mapping of objects only. A
pseudo-fact is a document-like unit containing a portion which is generated
through structure mapping. This model thus provides a detailed solution for
analog retrieval for generating suggestions. For example, the system may
have no knowledge about how to detect an enemy plane. But if it has
knowledge (in one document or several documents) about bats' behavior, it is
able to use this analogy to construct a pseudo fact for the user, and suggest
producing a "sound-like" thing for people to detect an enemy plane.

The components of the system, as well as an overview on the general
pseudo-fact generation process in our computational model (as well as in the
experimental system) are depicted in Figure 7.1.

7.3.3 DOCUMENT STORAGE AND RETRIEVAL THROUGH
 RELATIONAL DATABASE OPERATIONS

Although OGMIR was designed as a system for intelligent information
retrieval, it was implemented as an unstructured database residing in the main
memory. Therefore, its implementation demonstrates aspects from both
database systems and conventional information retrieval systems. Some
features of this implementation are highlighted below.

7.3.3.1 Conversion of documents into unstructured databases
The model was implemented using Prolog with some restrictions, such as

documents must be written following a small set of grammatical rules. The
motivation of imposing these restrictions is to avoid technical difficulties
while still demonstrating the usefulness of our model. The parser converts
these documents into items to be stored in the knowledge base.

 fd
 fc
 f
 f

 fb

Figure 7.1 The COGMIR model for storage and retrieval

There are two basic constructs in the knowledge base: objects and
relationships. Relationships indicate how the objects are associated, and
objects indicate what relationships are associated with them. All the data
structures are represented in terms of Prolog lists. Lists can be nested, and the
contents of a list are put in squared brackets. The conversion (i.e. parsing)
from document to document stems (consisting of objects and relationships) is
done through the system function f (which works like a parser). In the
following, we will only discuss the representation issue.

Representation objects. An object can be attached to an attribute list as well
as other associate lists. Each object is represented by a tuple written in list
form. Each object tuple has the following format:

[L, [N], [A], [RL]],
where L is the unique location of the object in the knowledge base, N is the
name of the object, A is an attribute list, and RL represents the location of
related relationships in the knowledge base (notice that an object may be
associated with several relationships).

Representing relationships. We will consider binary relationships only. (If a
relationship is not binary, it will be first converted to several binary
relationships by the parser. However, in this book, we will not address this
issue.) A relationship name is a verb or verb phase. Each relationship takes the
form of a tuple with the following format:

[L, [N], [A], [Ar, Ae]],
where L is the unique location of the relationship in the knowledge base, N is
the name of the relationship, A is an attribute list, Ar is the location of the first
object associated with the relationship, and Ae is the location of the second
object associated with the relationship.

Document
Base

Document
Description List

Knowledge
Base

Conceptual
Memory

For instance, the sentence (in restricted English) “the scientist discovers
capillaries” can be presented by two sublists in the object list and one tuple in
the relationship list. In the object list, we have
 [115, [scientist], [], [116]],
 [117, [capillaries], [], [116, 118, 120]]]
 The meaning of the first item is: an object, ‘scientist,’ is stored at memory
location 115, does not have its own attributes, and is associated with a
relationship stored at memory location 116. The second item represents an
object, ‘capillaries,’ which is stored at location 117, does not have its own
attributes, and is associated with relationships stored at location 118 and 120.
 In the relationship list, we have
 [116, [discovers], [], [115,117]]

This item represents a relationship, ‘discover,’ and is stored at memory
location 116. This relationship represents an action taken by the object stored
at location 115, with an object stored as location 117 as the receiver of this
action.

These lists can be viewed as relational databases with fixed fields of
attributes. Therefore, the underlying structure of the knowledge base
resembles relational databases. All the objects list can be considered a tuple in
a relation. All the object tuples form a relation object, which has fixed fields.
L, N , A , R . One difference that must be noted here is that the sublists are
ordered according to the location numbers assigned to objects or relationship;
while for relational databases, tuples are not ordered. But this kind of order
just imposes some additional restrictions on the relations, and the standard
relational operations such as select or union can be adopted with only minor
revisions (as explained in the next subsection). Each sublist in the relationship
list can also be considered a tuple in a relational database. All the relationship
tuples form another relation, relationship, which has fixed fields, L, N, A, Ar,
Ae. Notice that unlike the relations discussed in Chapter 4, these relations are
schema-free, because they represent unstructured data [Motro 1986]. In these
relations, the meaning of the key of a relation should be explained as the
location of an object or a relationship in knowledge base.

Representation document stems. A document stem consists of object tuples
along with some relationships between these objects. In other words, a
document stem is the collection of related object tuples and relationship
tuples. A document stem has the following format:

[O, R],
where O is its object list and R is its relationship list.

Therefore, a document stem is implemented as a relation. Similarly, other
system components, such as the concept memory, form a relation, as does the
document description list. But in our approach, instead of a tabular form, a list
form is used, due to the considerations from Prolog language. By mapping the
input documents into a frame-like list representation, which is much more
regular than that in the original documents, the power of manipulating a
regular, homogeneous structure, such as that demonstrated in a relational
database, is adopted.

A document stem with O and R as its object list and relationship list,
respectively, can then be expressed as (δ(O), δ(R)), or δ(O,R) for short (the
superscripts are used to denote its associated object list and relationship list).
We will also use the notation r(O), r(R), r(O,R) to denote the relations that
implement δ(O), δ(R), or δ(O,R), respectively.

As a comprehensive example, consider the documents (written in restricted
English) in Figure 7.2(a). The correspondent object list and relationship list of
their document stems are shown in Figure 7.2(b); each can be viewed as a
relation, and each row in a list can be viewed as a tuple in that relation.

1. the arteries carry blood from the heart, the veins carry blood to the heart.
2. a bat emits sound, the sound is inaudible. an obstacle reflects the sound, the obstacle is

invisible. the bat detects the obstacle.
3. a scientist discovers the capillaries. the capillaries connect the arteries. the capillaries

connect the veins.

(a) Several documents

Object list: Relationship list:
[101, [arteries], [], [102],

[[102, [carry], [], [101, 103]],
[103, [blood], [], [102]],

[104, [to], [], [103, 105]],
[105, [heart], [], 104]],

[107, [carry], [], [106, 103]],
[106,[veins], [], [107]],

[108, [from] , [], [103, 105]],
[109, [bat], [], [110,114]],

[110, [emits], [], [109, 111]],
[111, [sound], [inaudible], [110,112]],

[112, [reflects], [], [113, 111]],
[113,[obstacle], [invisible], [112,114]],

[114, [detects], [], [109, 113]],
[115, [scientist], [], [116]],

[116, [discovers], [], [115, 117]],
[117, [capillaries], [], [118,120]],

[118, [connect], [], [117, 119]],
[119, [arteries], [], [118]],

[120, [connect], [], [117, 121]]].
[121, [veins], [], [120]]].

(b)
Figure 7.2 (a) Original documents (b) Corresponding document stems in knowledge base

7.3.3.2Document algebra: an algebra on document stems and relations
Document storage and retrieval in such a system is done through the

various components of the system. In the following, we define document
algebra to handle documents that are operated as relations. Essentially,
document algebra is an extension of relational algebra discussed in Chapter 4.
But first, we should notice that there is a need to distinguish operations at two
levels: the higher level of document stems, and the lower level of relations.

Operations on document stems. We start with the following remark. Since
the relations used in the COGMIR model are schema-free, some operations
originally defined on conventional relations become meaningless. Unlike
conventional relational databases, we have only two relations to handle: the
object relation and the relationship relation. Therefore, the join operation as
defined in conventional relational database now does not make sense. In
addition, since both the object relation and the relationship relation have fixed
attributes, project operation as defined on conventional relational database
will not be of interest. Based on these considerations, we will not include join
and project as operations in our implementation. On the other hand, the
concept of document stem is new, and no previous definitions have been given
on the document stems. Therefore, we will borrow the names project and join,
to redefine these two operations on the document stems (rather than relations).

Project. A document (or its correspondent document stem) relevant to a
query does not necessarily imply the entire document is relevant to that query.
The operation πq(δ), that is, project operation over a query q for a document
stem δ, is to exclude, from that document stem, those object tuples and
relationship tuples that are not relevant to q.

Join. The join operation connects two document stems if they share an
object with the same name. The join of two document stems δi and δj (here i, j
are two document identifiers and i < j) is denoted as δi δj. This operation is
very important in our model, because separately acquired information stored
in different document stems can be connected. A note to be made here is the
role of the document identifier in the join operation of document stems; they
are used as time stamps of the corresponding documents, because they are
assigned according to the order in which they are acquired by the system.
Although better methods may be desirable, in the current implementation, we
have assumed documents acquired earlier record things which happened
earlier. In the current implementation, δi δj is not defined if i > j.

Operations on relations. Operations defined on document stems are
conceptual operations; the purpose of defining these operations is to provide a
convenient way to envision the system behavior. These operations are actually
performed through operations defined on relational databases, because the
object list and relational list resemble relations. We will use the following
operations on schema-free relations.

Select. The select operation ρq (R) selects tuples (rows) relevant to query q
from the schema-free relation R. This operation is much like the standard
select operation; the only exception is to keep the selected tuples in their
original order. For instance, we can select one or more rows (i.e. tuples) from
any of the two lists in Figure 7.2(b).

Union. The union of two schema-free relations R1 and R2 is denoted as R1

∪R2. This operation is much like the standard union operation on relations,
except for the requirement of keeping the original order to tuples in two
relations. Therefore, in general, R1 ∪ R2 cannot be replaced by R2 ∪ R1. For
instance, we can perform the union operation on two or more rows (tuples)
selected from the above operation.

The major step of performing retrieval from several documents can be
expressed as below. As already stated, we will use the notation δ (O, R) to
denote a document stem with object list O and relationship list R . In the
following, we will also use the notation δ q

(O, R) to denote a document stem
with object list O and relationship list R in answering query q. if qs and qt are
two subqueries of the original query q, qs ∪ q t = q (where ∪ denotes set
union), if we define the answer for the union of two queries as the union of the
answers of these two queries, namely,

δ (qs ∪ qt)
 (O) = δ qs

(O) δqt
(O)

then we have

δq
(O) = δ (qs ∪ qt)

 (O) = δ qs
(O) δqt

(O)

 = πqs (δ (O)) πqt (δ (O))

(due to the definition of projection on document stems and the meaning of
query), and

 = σqs (r
(O)) ∪ σ qt (r

(O))

(due to the definitions of selection and union on unstructured relations).
Similarly, we have

δq
(R) = δ qs

 (R) δqt
(R)

 = πqs (δ (R)) πqt (δ (R))

 = σqs (r
(R)) ∪ σqt (r

(R)).

The above two formulas can be combined to
δq

(O,R) = δ qs
 (O,R) δqt

(O,R).

Note that the join () of document stems δ qs and δ qt is realized through the
union of tuples in schema-free relational databases. The union operation will
be performed only when δ qs (O) and δ qt (O) share some common object
name. In our implementation, an auxiliary list of object names is constructed
for each involved document stem (δ qs (O) and δ qt (O)); the intersection of
these two lists is then checked to determine whether any object name is
shared.

In summary, when dealing with a retrieval, first, relevant document stems
are identified through L and C. The remaining steps are carried out by using
the following four formulae:

δqs
(O) = σqs (r

(O)), (1)

δqs
(R) = σqs (r

(R)), (2)

δ q(s ∪ t)
 (O) = δqs

(O) δqt
(O) =σqs (r

(O)) ∪ σqt (r
(O)), (3)

 δ q(s ∪ t)
 (R) = δqs

(R) δqt
(R) = σqs (r

(R)) ∪ σqt (r
(R)). (4)

The meaning of these formulae can be shown in the following example.
Consider the knowledge base depicted in Figure 7.2(b), and suppose the
objects specified in a query are a set q = {capillaries, heart}. Figure 7.3(a) is
basically a duplication of Figure 7.2(b), with rows (tuples) from different
documents separated by blank lines. (Identifying tuples from different
documents is handled by the document description list, but the details will not
be addressed in this article.) Document description list L and conceptual
memory C determine that only document stem δ1 and δ3 are relevant to the
query q. Figure 7.3(b) depicts relevant document stems (which include only
tho se tup les wh ich are r elevant to th e cu rr ent q u er y q) . Th e r es ult o f per fo rm ing
a select operation on relations is shown in Figure 7.3(c), where tuples are in
the relevant documents but those not directly related to the current query
(namely, tuples that correspond to “a scientist discovers the capillaries”) are
excluded. This is done by applying formulae (1) and (2). Starting from Figure
7.3(c), we now apply formulae (3) and (4), where qs = {heart} while qt =
{capillaries}. The object names involved in two document stems are {arteries,
blood, heart, veins} and {capillaries, arteries, veins}, respectively. Since these
two document stems share object names {arteries, veins}, the union of tuples
can be performed, resulting in Figure 7.3(d). From this resulting document
stem, a fact in restricted English can be reconstructed. (Here the term fact is
used in the same sense as the term “fact retrieval” has appeared in IR
literature, which refers to a part of the contents.)

Notice that the two occurrences (with two different memory location
number, 106 and 121) of object ‘vein’ as it appears in two documents are
treated as one thing, and so are the two occurrences of the entity ‘arteries’
(which two location numbers, 101 and 119). Sharing object names is a
necessary condition for performing the join operation. As a result, the
following fact can be constructed to answer the query {heart, capillaries}:

arteries carry blood to heart. vein carry blood to heart.
capillaries connect arteries. capillaries connect veins.

Note that, although this short paragraph looks like a document, it is not.
Instead, it is generated from the document stems that contain contents relevant
to the query.

Object list: Relationship list:

[101, [arteries], [], [102],
[[102, [carry], [], [101, 103]],

[103, [blood], [], [102]],
[104, [to], [], [103, 105]],

[105, [heart], [], 104]],
[107, [carry], [], [106, 103]],

[106,[veins], [], [107]],
[108, [from] , [], [103, 105]],

[109, [bat], [], [110,114]],
[110, [emits], [], [109, 111]],

[111, [sound], [inaudible], [110,112]],
[112, [reflects], [], [113, 111]],

[113,[obstacle], [invisible], [112,114]],
[114, [detects], [], [109, 113]],

[115, [scientist], [], [116]],
[116, [discovers], [], [115, 117]],

[117, [capillaries], [], [118,120]],
[118, [connect], [], [117, 119]],

[119, [arteries], [], [118]],
[120, [connect], [], [117, 121]]].

[121, [veins], [], [120]]].

Figure 7.3 (a) Document stems (knowledge base containing δδδδ1, δδδδ2, δδδδ3)

Object list: Relationship list:

[101, [arteries], [], [102],
[[102, [carry], [], [101, 103]],

[103, [blood], [], [102]],
[104, [to], [], [103, 105]],

[105, [heart], [], 104]],
[107, [carry], [], [106, 103]],

[106,[veins], [], [107]],
[108, [from] , [], [103, 105]],

[115, [scientist], [], [116]],
[116, [discovers], [], [115, 117]],

[117, [capillaries], [], [118,120]],
[118, [connect], [], [117, 119]],

[119, [arteries], [], [118]],
[120, [connect], [], [117, 121]]].

[121, [veins], [], [120]]].

Figure 7.3 (b) Document stems relevant to the query (δδδδ1, δδδδ3)

Object list: Relationship list:
[101, [arteries], [], [102],

[[102, [carry], [], [101, 103]],
[103, [blood], [], [102]],

[104, [to], [], [103, 105]],
[105, [heart], [], 104]],

[107, [carry], [], [106, 103]],
[106,[veins], [], [107]],

[108, [from] , [], [103, 105]],
[117, [capillaries], [], [118,120]],

[118, [connect], [], [117, 119]],
[119, [arteries], [], [118]],

[120, [connect], [], [117, 121]]].
[121, [veins], [], [120]]].

Figure 7.3 (c) Document stems after projection through select operation on relations [using
formulae (1) and (2)].

Object list: Relationship list:
[101, [arteries], [], [102],

[[102, [carry], [], [101, 103]],
[103, [blood], [], [102]],

[104, [to], [], [103, 105]],
[105, [heart], [], 104]],

[107, [carry], [], [106, 103]],
[106,[veins], [], [107]],

[108, [from] , [], [103, 105]],
[117, [capillaries], [], [118,120]],

[118, [connect], [], [117, 119]],
[119, [arteries], [], [118]],

[120, [connect], [], [117, 121]]].
[121, [veins], [], [120]]].

Figure 7.3 (d) Join of document stems through union operation on relations
[using formulae (3) and (4)]

From the above simple example, we have seen that the operations are not
trivial. In order to see why these nontrivial operations are needed, let us
summarize some features of the overall system by associating system
components (other than the knowledge base) to the retrieval process. First , let
us recall that conceptual memory identifies relevant document stem. The
boundary consists of only part of object names; starting from the boundary,
the interior of the document stem can be examined by processing a portion of
the object list and relationship list.

Implementing knowledge base as an unstructured database with necessary
operations defined on it has some significant merit over the use of a plain
“sentence base” consisting of all sentences acquired from documents. This is
partly because, in our model, the conceptual memory will identify document
stems which are relevant to the current query; only a portion of the knowledge

base (instead of the entire “sentence base”) will be searched. This will
represent a significant saving when the number of document stems becomes
large. Storage using object tuples and relationship tuples actually implements
a net-like structure.

This net-like structure clearly indicates which relationships are related to an
object. Determining the connection between different document stems through
objects is thus much easier than directly checking the sentences one by one,
particularly when the number of sentences that need be checked becomes
large. In addition, due to the net-like structure (implemented as tuples), our
system is able to generate new documents through structure mapping (using
information concurrently available in the knowledge base), thus realizing a
kind of analogical reasoning. Document generation through structure mapping
might be a more difficult problem if a “sentence base” (rather than the
knowledge base consisting of object and relationship tuples) is maintained.

There are also some limitations of this implementation, such as documents
being acquired in the order of the events (as described by these documents)
that occur; documents with larger identifiers are acquired later, thus
containing more updated information; the event which occurred or
information contained in a document with a larger identifier may update those
in a document with a smaller identifier, but may not be consistent (namely,
contradictory) with them.

These assumptions have caused some limitations on our experimental
system. Some limitations related to the management of the unstructured
databases used in the experimental system are listed below.

1. Order requirement of join. As stated earlier, two document stems
δi and δj can only be joined to form a resulting document stem
δi δ j if they share at least one object name and i < j. In this
case, δj δi is not defined, and consequently, the relationship

 δi δ j = δj δi is not true. The rationale of this requirement is
due to assumption (i); consequently, in the result after join,
knowledge contained from the document acquired later always
appears later, even though it may be concerned with some earlier
event.

2. Simplified treatment for partially redundant documents. Due to
the above assumptions (i), (ii), and (iii), if two document stems
contain redundant information, the information contained in the
document with the larger identifier will always be used.

3. The need for dealing with inconsistency. Current implementation
simply assumes that inconsistency does not exist. Therefore,
even if a document contains information which is contradictory
to an existing one, the implemented system cannot detect it.

All these limitations can be removed or reduced to a lesser degree, although
the tasks may not be trivial. For instance, in order to remove limitation 3, we
may add an independent component which employs an advanced
computational technique (such as the approach described in [Baral, Kraus and

Minker 1991]) so that only consistent information will be included in the final
result.

7.3.4 GENERATING SUGGESTIONS

7.3.4.1 Basic idea and an example
The overview given in the last section indicates that our computational

model provides dual modes to deal with user queries. On the one hand, if
information requested by the user is available, a document is reconstructed
from its internal form (called the document stem) in the knowledge base and
presented in the text format to the user. This is the regular mode which is
already briefly described in the previous section. On the other hand, in case
the requested information is not available, the user may use the analogy mode
to ask the system to generate a document using analogical reasoning. This
generated document may serve as a suggestion or an advice to the user. One
option to be considered here is to map the keywords in the query list
submitted by the user to another list. For example, if the user wants to know
how people deal with planes dispatched by enemies, he may submit a query
“people, enemy, plane.” Suppose no relevant document is found. Since both
the document description list and the query description list consist of objects,
if a suggestion is to be generated using analogy reasoning, it has to be done by
mapping of objects only. However, as we have briefly summarized in an
earlier section, at the heart of the structure mapping theory is the mapping of
relationships among these objects. Such structure information is not implied
in the query consisting of keywords “people, enemy, plane”; it must be
explicitly stated. In other woes, in order to perform structure mapping, it is
not enough for the user to simply enter a few keywords. A reasonable way to
deal with this situation is to ask the user to provide some help. Although the
user dose not have the answer (otherwise he will not consult the system), he
can still provide some information concerning the relationship between the
objects to be retrieved. For example, ha can tell the system what he knows,
namely, the enemies have dispatched a plane and the plane is not visible; he
should also tell the system what he wants to know, that is, how to detect the
planes. The system can acquire such structural information by asking the user
to enter this query in a form similar to a document, but with some missing
information to be filled. By doing so, the user describes the structure of the
target analog; the system can then find one or more source analogs (i.e.,
document stems) from which structure mapping can be performed to generate
a new structure so that the missing information in the target analog can be
filled. The target analog, since it takes the form of a regular document, will be
referred to as an incomplete document. Just like a regular document, an
incomplete document is written in restricted English, but it differs from a
regular one in that it contains unknown information to be answered. An
incomplete document always has a sentence appearing at the end, started with
a word “how” and ended with a question mark (“?”). In our example, the
incomplete document takes the following form:

 the enemy dispatches a plane.
 the plane is invisible.
 How do people detect the plane?

The last sentence of an incomplete document indicates an unknown part,
while the other sentences form the known part of the incomplete document
(the known part is similar to a regular document). An incomplete document
and its correspondent incomplete document stem will be denoted as d and
δ , respectively.

Now let us consider the entire process of suggestion generation. Suppose
the user wanted to retrieve a document for detecting enemy’s plane. He
used the regular retrieval mode by providing several keywords but no relevant
document could be retrieved. Then he had to switch to the mode of analogical
reasoning. In order to let the system find a structural similar document, the
user provided an incomplete document as shown above. To answer this query,
the system formed a query description list from this incomplete document. In
the simplest case, the query description list could be obtained by taking the
first object (noun) of each sentence; in this example, it consists of “enemy,
plane, people.” What the system would perform is not to retrieve a document
(or a fact) consisting of the words in the query description list, but rather, a
document (or a fact) which consists of words similar to the query description
list and contains a portion which has the same structure with the known part
of the incomplete document. The retrieved document (or fact) also contains a
portion that does not have a counterpart in the incomplete document. The
incomplete document can then be filled by mapping this portion into the
domain which the incomplete document belongs to. A new document in the
target domain is thus generated, which provides a suggestion to the user. If the
user is satisfied with it, it can be further stored as a regular document.

Back to our example, assuming that the document concerning the bat is a
document acquired by the system earlier, which has the structure similarity
with the incomplete document, and can thus be used as a source (base) analog.
This document will be retrieved. For convenience of our discussion, the
document is repeated below.

 a bat emits a sound.
 the sound is inaudible.
 an obstacle reflects the sound to the bat.
 the obstacle is invisible.
 the bat detects the obstacle.

The incomplete document itself, on the other hand, becomes part of the
target analog. With the help of the conceptual memory, the system determines
the similarity between the incomplete document and this existing document.
Using a structure mapping algorithm (detail will be provided later), the system
will generate the following document as a suggestion to fill the incomplete
document originally provided by the user:

 the enemy dispatches a plane.
 the plane is invisible.

 people emits [sound-like].
 the [sound-like] is inaudible.
 the plane reflects [sound-like] to the people.
 people detects plane.

The third, fourth and fifth sentences (Italicized) in the above document are
generated by the computer. Here a word in the pair of squared brackets []
indicates a new object generated through structure mapping. For example, the
object [sound-like] is an object generated from the object “sound”; it means
“something similar to the sound.”

As illustrated by this example, document generation using analogical
reasoning is the process of filling an incomplete document stem d (i.e., the
internal structure of the incomplete document provided by the user). This can
be denoted as

δ = δ0 ψ,

where δ is the completed document by filling δ , δ0 is the known part of δ
and ψ is the generated part through structure mapping, and is the join
operation of δ 0 and ψ. Since document stems are nodes and links in the
knowledge bas, both δ0 and ψ can be treated as document stems.

In the previous incomplete document, we have = δ0:
 the enemy dispatches a plane.
 the plane is invisible.

and the generated part is ψ:

 people emits [sound-like].
 the [sound-like] is inaudible.
 the plane reflects [sound-like] to the people.

In general, the known part δ0 consists of more sentences, thus having a
more complicated structure. This example is made simple so that the structure
of the document can easily be visualized (as indicated in figures later in this
chapter).

Since the last few sentences are generated rather than retrieved, they are not
necessarily true knowledge; in other words, they just form a suggestion to the
user. In this example, these generated sentences suggest that in order to detect
the enemy plane (as submitted in a user request), people may use some thing
which is similar to the inaudible sound (as used by a bat) so that the invisible
plane will reflect the sound to the people. This is of course a highly simplified
reproduction of invention of radar (which is a device to produce inaudible
sound for detecting distant objects).

7.3.4.2 Steps for analogical problem solving
We now describe the steps for performing document structure mapping in

our computational model in terms of a general framework as summarized in
[Burnstein 1988]. The framework provides a process theory of analogical
reasoning consisting of six stages:

1. Base domain memory retrieval;

2. Comparison of base and target models;
3. Mapping a partial model from the base to the target;
4. Justification and integration of the mapped model;
5. Debugging the target model;
6. Generalization of shared structure.

COGMIR implemented the first three steps. Among these three stages, the
first stage is also the most critical one. The last few steps were not considered
because the model treats a newly generated document (namely, the filled
incomplete document) in the target domain as a suggestion or possible
solution produced from the system’s currently available knowledge, leaving
the responsibility of determining the quality of the suggestion to the user. If
the suggestion is acceptable, upon the user’s request, the system will store it as
a regularly required document.

According to the structure mapping theory, objects and relationships in the
source (or base) domain are mapped into the target domain. In our
computational model, we consider the structure mapping from a source analog
(consisting one or more stored documents) to a target analog (which is a
pseudo-fact). A pseudo-fact (where the term “fact” is used in the sense defined
earlier) is a document-like unit containing a portion which is generated
through structure mapping.

In the implementation, parsing an incomplete document is similar to parsing
a regular document. The internal form of the incomplete document (the
document stem) is stored in a temporary area separated from the knowledge
base. Each object or relationship is assigned a negative integer as its
sequential location number (instead of a positive one, as used in the
knowledge base), so that the incomplete document and the generated structure
will not be mixed with the actual knowledge base. However, a procedure
exists so that upon the user’s request, the pseudo-fact can be converted as a
regular document and is then stored in the knowledge base.

An overview on the general pseudo-fact generation process in this
computational model (as well as in the experimental system) is depicted in
Figure 7.4.

7.3.4.3 Structure mapping for generating suggestions
We now provide some detail on structure mapping for generating

suggestions. Since the basic idea of document mapping can be clearly
illustrated in the case of source analog consisting of only one document, the
discussion will be mainly around the case of using single document. The
entire process of suggestion generation is to be performed as two steps:
construct a document stem ∆ as the source analog, followed by a mapping and
structure generation process φ∆.

As indicated in the previous section, parsing an incomplete document is
similar to parsing a regular document. A little more detail is given below. A
description list for this incomplete document (which will be referred to as a
query description list), is constructed in the same way as for a document
description list. In order not to let the basic idea mixed with technical

difficulties involving natural language processing, the following simplified
treatment has been taken. If a sentence is a regular sentence, this list is
constructed from the first noun of each sentence. On the other hand, if a
sentence is a question, we first change the sentence from the original form into
one consisting of an object with unknown name “?” and a relationship with
unknown name “?”. The document stem converted from the incomplete
document is stored in the temporary area separated from the knowledge base.
There will be a sequential location number, but it will be indicated by a
negative sign (instead of a positive one, as used in the knowledge base).

We now consider the general process of using analogical reasoning to
generate suggestions. The basic idea of structure generation in the system can
be explained in the case where the structure to be mapped is from a single
document. In this case, the pseudo fact is generated by mapping a document to
the incomplete document.

The heuristic used in generating new structure is that since the structure as
described in two documents are similar in part, it is reasonable to expect that
the rest of their structures should also be similar. The entire process of
generating document (which serves as a suggestion) is performed in two
phases: find a source analog (which is fact constructed from stored document
stems), and then map this source analog to generate a new document. Unlike
the retrieval in the regular mode, in the analogy mode what to be retrieved is
not precisely specified in the original query; rather, the task is to retrieve a
document which is structurally similar to the query.

We use the term object similarity to refer to the similarity between an object
in the incomplete document and an object in the source analog. Object
similarity is determined by using conceptual memory and attribute similarity.
We use the symbol a ~ b to denote object similarity between two objects a and
b. We also use the term document similarity between two documents. Object
similarity is used in document similarity, but the similarity between
relationships in these two documents is of fundamental importance in
determining document similarity. This is compatible with Gentner’s principle
of systematicity of structure mapping theory [Gentner, 1983], as briefly
mentioned in Section 1.2. Relationships in the two documents stems (referred
to as relationship pairs) are considered similar if they have exactly the same
name or carry the same semantic information using auxiliary rules (a topic
which will not be addressed here). We use the symbol d1 ≅ d2 (or δ1 ≅ δ2) to
denote similarity between two documents d1 and d2 (or their corresponding
document stems δ1 and δ2).

Both object similarity and document similarity can be numerically
determined and are controlled by a predefined threshold. Since the purpose of
this paper is to explain the basic idea of structure mapping, details are omitted
here. Some key ideas of a top-level algorithm for document structure mapping
are summarized below.

1. Convert the incomplete document (whose document stem is δ0) into
internal form (in a temporary area). Identify the objects on the query
description list. Suppose the query description list is Q = (q1,q2,…,qn).

2. Retrieve (with the assistance of the conceptual memory) a document
or a fact which satisfies the following requirements:
• The document to be retrieved satisfies the query description list Q’ =

(q’r1,q’r2,…q’rm) (m ≤ n), q1 ~ q’r1, q2 ~ q’r2,…, qm ~ q’rm. This is to
construct a list Q’ consisting words similar to Q and use Q’ instead of
Q itself to retrieve relevant documents.

• The document stem of the retrieved document δ’ satisfies δ’ ≅ δ0. This is
to retrieve a document which is structurally similar to the incomplete
document.

• Construct structure mapping function Φ based on similarity between δ0

and δ’: Φ: δ’ → δ0,

so that δ0 ⊂ Φ (δ’). (Here the notation ⊂ indicates that δ0 is contained in
Φ(δ’).) As stated earlier, δ’ can be considered as consisting of two parts δ’0

and ψ’* (each can be considered as a document stem): δ’ = δ’ ψ’* where
δ’0 satisfies δ0 = Φ(δ’0). Here denotes the join operation of two document
stems (the operation on document stems were defined in [Chen, 1994]).
• Perform structure mapping to generate new structure to fill the incomplete

document:ψ* = Φ(ψ*).

In the steps described above, it is important to determine the object
similarity and document similarity. The object similarity sim is determined by
applying the following rules:
1. If two objects have the same name, then they are treated as the instances

of the same object; assign sim = 1.
2 . If two objects have the same parent in the hierarchical conceptual

memory, assign sim = W (0 ≤ W ≤ 1). If in the hierarchical conceptual
memory, one object is the parent of the other object, assign sim = W’ (0 ≤
W’ ≤ 1). Both W and W’ are some constants indicating certain degrees of
similarity; for example, they can be assigned as 0.6 and 0.5, respectively.

3. Com pu te similar ity b as ed on the ratio n of attr ib u tes sh ared b y bo th ob jects .
For example, if the object “ship” has attributes “people-mover,” “big” and
“in-water,” and the object “car” has attributes “people-mover,” “big” and
“in-land,” then two out of three attributes are shared by both objects.
Therefore, sim (ship, car) is 2/3 or 0.67. similar rules have also been
developed to deal with two objects which have different number of
attributes.

4 . If none of the above rules is applicable, then assign sim = U (for
unknown). The purpose of assigning U for some pairs is to give a chance
to the pairs whose similarity cannot be decided immediately.

In addition, relationships in these two document stems (also called
relationship pairs) are considered similar if they have exactly the same name,

 fd

 f

 fb

 fc

-1

(Note: Solid lines indicate operations related to storage: dashed lines indicate operations related to
query) (f, fb, fd, fc

-1 denote mappings)
Figure 7.4 Overview of pseudo-fact generation process

or if they can be treated as similar by using additional heuristic rules (such as
relationships “like’ and “love”). Based on the notions of object similarity and
relationship similarity, the similarity between two parts of document stems
can be determined. In general, the overall similarity between two document

 TEMPORARY
 Dp AREA

 Structure
 mapping

KNOWLEDGE BASE Df

QUERY
Pseudo
 fact DOCUMENT BASE

DOCUMENT DESCRIPTION LIST

CONCEPTUAL
MEMORY

Dp: Document
stem of pseudo
fact

Df: Document
stem of a fact

stems are the minimum similarity among all the involved object pairs and
relationship pairs as stated above.

The search process in the conceptual memory is revised from regular
retrieval. Due to space limitation, we will only highlight some key points in
this process. The query description list constructed from the incomplete
document will be used for searching; for each candidate pair of objects,
relationships involving this pair of objects will be compared. Furthermore,
compute the overall document similarity after every relationship pair
comparison is checked, and the comparison is aborted as soon as the similarity
is determined under a certain threshold η. Repeat the same process by starting
to compare different objects on the boundaries of the two document stems, or
choosing some other document stems to compare.

7.4 SUMMARY

This chapter started with a brief discussion on non-exact retrieval. The main
theme of this chapter, however, is to examine the interplay between retrieval
and reasoning. In particular, we have reviewed the COGMIR model, which
supports the notion of reasoning as extended retrieval. This perspective is
useful for building integrated retrieval systems involving different kinds of
retrieval. However, we should also be cautious about this approach. Some
important issues, such as scaling up, were never mentioned in the literature.
Nevertheless, the experiment deserves some attention, not only because the
holistic perspective concerning retrieval and reasoning is important for
decision making, but also because of the aspects related to computational
creativity, as to be discussed in the next chapter.

SELF-EXAMINATION QUESTIONS

1. What are the pros and cons of viewing retrieval as extended reasoning?
2. In order to carry out an experiment to remove a human tumor, a doctor

designed a machine which is able to remove seeds from a watermelon.
Provide a brief discussion on how COGMIR can generate suggestions for
this.

3. Give an example to show that a query can be solved by using analogical
reasoning but cannot be answered by COGMIR as described in this
chapter.

4. What are the major differences between reasoning as extended retrieval as
discussed in this chapter with knowledge retrieval discussed in Chapter 5?

REFERENCES

Baral, C., Kraus, S. and Minker, J., Combining multiple knowledge bases,
IEEE Transactions on Knowledge and Data Engineering, 3(2), 208-220,
1991.
Burnstein, M. H., Combining analogies in mental models, in Helman, D. H.
(ed.), Analogical Reasoning, Kluwer, Dordrecht, 1988.
Chen, Z., Reasoning as extended retrieval: document generation through
structure mapping, Communication and Cognition - Artificial Intelligence
(CC-AI), 10(4), 343-356, 1993.
Chen, Z., Enhancing database management to knowledge base management:
the role of information retrieval technology, Information Processing and
Management, 30(3), 419-435, 1994.
Chen, Z., Generating suggestions through document structure mapping,
Decision Support Systems, 16(4), 297-314, 1996.
Frisch, A. M. and Allen, J. F., Knowledge retrieval as limited inference,
Proceedings of the 6th Conference on Automated Deduction (Lecture Notes in
Computer Science), Loveland, D. (ed.), 274-291, 1982.
Gentner, D., Structure mapping: A theoretical framework for analogy,
Cognitive Science, 7, 155-170, 1983.
Hofstadter, D. (and the Fluid Analogies Research Group), Fluid Concepts
and Creative Analogies: Computer Models of the Fundamental Mechanisms
of Thought, Basic Books, New York, 1995.
Kolodner, J. L., Case-Based Reasoning, Morgan Kaufman, San Mateo, CA,
1993.
Luger, G. and Stubblefield, W., Artificial Intelligence: Structures and
Strategies for Complex Problem Solving (3rd ed.), Addison Wesley Longman,
Harlow, England, 1998.
Motro, A., Assuring retrievability from unstructured databases by contexts,
Proceedings of Internatonal Conference on Data Engineering (ICDE 86),
426-433, 1986.
Soto, P., Text mining: Beyond search technology, IBM Systems Journal, 3(3),
14-19, 1998.

Chapter 8

COMPUTATIONAL CREATIVITY AND
COMPUTER ASSISTED HUMAN

INTELLIGENCE

8.1 OVERVIEW
The COGMIR model as examined in Chapter 7 is an example of how

computational creativity can be achieved. In fact, creativity is an important
aspect of intelligence, and intelligent agents should be able to support
creativity in decision making. In this chapter we will take a look at this issue
and its importance with decision support. Our discussion will be focused on
the following two tasks: computational creativity (that is, how to make
computers demonstrate some kind of creativity), and computer assisted human
intelligence (that is, how to make computers assist human creativity). These
are two related issues, but with different emphases. For example, the former
task is closely related to the study of computational intelligence, while the
latter one is more closely related to human-computer interaction (HCI).

8.2 COMPUTATIONAL ASPECTS OF CREATIVITY

8.2.1 REMARKS ON CREATIVITY

Most researchers have agreed that creativity is generally defined as the
production of something (e.g., a scientific theory, work of art, poem, novel,
etc.) which is both novel and valuable according to consensual judgment.
Rothenberg studied creativity, connecting it with dream, and designated the
process of actively formulating simultaneous antitheses janusian thinking,
which consists of actively conceiving two or more opposite or antithetical
ideas, images, or concepts simultaneously. A related concept is homospatial
thinking, a sort of spatial abstraction which consists of actively conceiving
two or more discrete entities occupying the same space, a conception leading
to the articulation of new identities [Rothenberg 1979].

There are different viewpoints within the computational intelligence
research community about the nature of intelligence. One influential
viewpoint from Boden is to view creativity as representation redescription.
Problem solving is a search over a given search space defined by a set of
constraints, operators, and representations. Creative problem solving involves
finding important solutions that other searchers miss. The extra search power

comes from an ability to transform the search space. That is, creative search
involves changing or extending the constraints, operators, or representation,
using an additional set of operators whose job is to modify the first set.
Therefore, ordinary thought is a search over an ordinary search space, while
creative thought is a meta-search using a separate set of operators.

Creativity often has an emotional surprise or "aha!" aspect (which implies
something that violates our expectations has happened). Boden likens
intelligence to a generative system. Creativity results from changing one's
conceptual system to produce new thoughts which were impossible under the
old conceptual system. Creative thought is distinguished from ordinary
problem solving by conceptual restructuring [Boden 1990].

8.2.2 THEORETICAL FOUNDATION FOR STIMULATING HUMAN
THINKING

A central task of management is decision making, and a crucial aspect of
decision making is having good alternatives from which to choose. Based on a
conceptual framework considering creative processes, environments, outputs,
and individuals, generating alternatives is viewed as a process of "making
connections" -- internal connections among problem elements and external
connections between a problem and its environment. Making connections
refers to the creation of new ideas through association between existing ideas.
Such connections (associations) can come in many forms. A central
distinction is between internal connections and external ones. Internal
connections are those between elements of the focal problem itself. External
connections are those between the focal problem and external factors. Internal
connections may focus either on the form of the problem or on the purpose;
external connections may be local or distinct. Connections can also be
established by incorporating machine learning algorithms (such as genetic
algorithms, to be discussed in Chapters 10).

New ideas may be generated by introducing new elements into a problem
context, by altering the relationships between the elements of a problem, or a
combination, namely, by introducing new elements as well as by altering the
relationships between elements.

Two principal preferred creativity styles have been identified, namely,
adaptation and innovation. Corresponding to these two styles are two kinds of
creative products, paradigm-preserving (PP) and paradigm-modifying (PM).
In addition, some heuristics related to creativity style have been observed, for
example, the following heuristics on stimulus relatedness:

• The more related the stimulus, the more likely is the generation
of PP ideas. The less related the stimulus, the more likely is the
generation of PM ideas.

• Free association is likely to generally result in PP ideas, while
forced relationships are likely to result in PM ideas.

• Simultaneity could result in the generation of PP ideas.
Conversely, turn-taking could potentially encourage the
generation of PM ideas, relative to simultaneous idea generation.

A kind of reasoning process closely related to PM is analogical reasoning.
Suggestions generated in more advanced programs such as COGMIR (see
Chapter 7) have a better quality than those ideas generated in conventional
idea processors, because the system includes a kind of evaluation process so
that only the most promising ideas will be further explored.

In order to study computational intelligence in a systematic manner,
computational models for creativity have been developed. The following are
two examples. For more detailed summary of computational models for
creativity, see [Chen 1999a].

Achieve computational creativity through transformation. The engineering
aspect of computational intelligence has encouraged many researchers to
develop exploratory programs to achieve computational creativity. According
to an approach for computational creativity, problem solving is seen as the
search of an explicit knowledge space for known solutions and creativity as
the search of a vast, implicit knowledge space for new solutions. Creativity is
distinguished from problem solving not by a single distinguished mechanism
(i.e., representational re-description) but by the types of solutions it discovers:
solutions incorporating knowledge not found by ordinary problem solving.
New problem solutions can be created by transforming a problem into a new
problem, solving the new problem, and then adapting the solution back to the
original problem. This model also provides an explicit mechanism by which a
problem solver can perform the kinds of knowledge re-descriptions needed to
be creative.

Case-based reasoning framework. In a framework revised from case-based
reasoning, creative thought, like all thought, is treated as involving processes
of problem interpretation and problem reformulation, case and model
retrieval, elaboration and adaptation, and evaluation. Creativity arises from the
confluence and complex interaction of inferences using multiple kinds of
knowledge in the context of task or problem and in the context of a specific
situation.

8.2.3 CREATIVITY IN DECISION SUPPORT SYSTEMS

In the interdisciplinary area of decision support systems, [Holsapple and
Whinston 1996] predicted that knowledge-based systems in future knowledge-
based organizations should be "computer co-workers" with the ability to
"recognize needs, stimulate insights and offer advice." Analogy and metaphor
can provide an important role in offering advice. Research work has been
conducted to support analogical problem solving or achieve creativity support
systems through computerized metaphor generation. For example, in [Young
1987, 1988], three levels have been defined for supporting metaphoric
thinking:

• the secretarial level (the computer is used essentially as a dynamic
electronic blackboard),

• the framework-paradigm level: the computer can provide frameworks to
organize the user's thoughts and to provide examples to serve as both
thought stimuli and guides to the user), and

• the generative level (the computer can automatically synthesize and
display new ideas).

The three support levels are hierarchical and cumulative; thus the
generative level includes the prior two levels.

8.3 IDEA PROCESSORS

8.3.1 BASICS OF IDEA PROCESSORS

A typical example of computer-assisted human creativity can be examined
through idea processors. Two types of programs can be developed to elicit or
facilitate human creativity: the creativity acquisition programs (somewhat
similar to knowledge acquisition in knowledge-based systems) and the
creativity facilitation programs. Idea processors belong to the latter category.
They are tools at the generative level (see definitions given at the end of
section 8.2.3). Idea processors represent computerized endeavors to generate
and organize ideas, thus enhancing (or amplifying) human creativity. The term
idea means an understanding, insight or some primitive form of solution to a
problem. In a looser sense, the term idea processor also covers various
creativity support systems. Idea processors are used to support work in early,
emergent and usually creative stages of human intellectual activities such as
research planning, conceptual design, software requirement analysis,
knowledge acquisition, decision making, counseling, motivation, as well as
others.

The purpose of idea processors is to assist human intelligence, namely, to
provide computer support for ordinary people. We are interested in human
creative potential -- not just with analyzing it, but with asking how people can
become more creative. An individual's natural creative potential is
biologically determined and established early in life, and is not expected to
vary significantly over time. However, through training, an individual's
creative performance can be amplified or inhibited. Creativity training
represents the individual's past knowledge and developmental history
concerning his or her creative behavior. Idea processors have been developed
for this purpose; they influence an individual's performance by providing the
necessary suggestions and cures to produce a creative response.

Idea processors can be examined from the computerized problem solving
perspective. Since their main tasks are idea generation and organization, idea
processors fall in the scope of knowledge-support systems, and can be viewed
as a partner for human beings in problem solving. However, unlike some other
partner machines, idea processors usually are not participants of the whole

problem solving process; instead, they are only used for idea generation and
organizations in some specific stages of problem solving.

Creative thinking is usually considered as relating things or ideas which
were previously unrelated. For many idea processors, the most important
technique is to generate ideas through electronic brainstorming.
Brainstorming, first proposed by Alex Osborne in 1930s from management
science, is a method of getting a large number of ideas from a group of people
in a short time [Osborne 1963]. [Koestler 1974] used the term "bisociative
thinking" to show the linking of two unrelated planes or matrices in the
creative act. Two or more quite unrelated concepts can be combined to give a
totally new concept. Idea processors use electronic means to achieve effects
similar to conventional brainstorming for idea generation, but they do not
necessarily rely on the group effort.

Several guidelines for brainstorming are available, such as suspend
judgment, free-wheel, quantity, and cross-fertilize. Brainstorming can be
conducted through several stages include (i) state the problem and discuss, (ii)
restate the problem in the form of "How to...", (iii) select a basic restatement
and write it down, "In how many ways can we...", (iv) warm-up session, (v)
brainstorm, and (vi) identify wildest idea. Some evaluation method should be
used to identify the few good ideas for implementation [Rawlinson 1981]. An
implicit assumption used here is the quantitative measure: if a large quantity
of ideas was generated, then the idea pool very likely would contain high-
quality ideas. An important note: despite the controversial (sometimes poor)
laboratory performance of techniques such as brainstorming (based largely on
quantitative measures), the business world continues to rely on them.
Brainstorming has also been used for engineering design process to offer
strategic support, because it separates the production of ideas or plans from
any criticism of them. Related to brainstorming is brainwriting, which is
characterized by silent, hand-written communication. Brainwriting can be
categorized as either interactive or nominal (which is non face-to-face idea
generation). Electronic brainstorming is actually electronic brainwriting.

Two related issues that must be addressed in brainstorming are
convergence and divergence of ideas. In the context of creative thinking,
convergence refers to analytical thinking where the process converges to a
single answer, while divergence refers to creative thinking where the process
diverges to a large number of ideas and ranges far and wide over the problem.
Creative thought has both divergent and convergent aspects, as to be further
explained in the next section. The process of brainstorming is divergent, with
participants ranging far and wide in their endeavor to find possible solutions.
Evaluation is convergent, seeking to convert the many ideas into the few
solutions.

Electronic brainstorming tools are frequently used as components of group
decision systems to brainstorm ideas. These thoughts are then organized into
categories using the categorizer or idea organization tools. A
ranking/ordering/voting process is carried out to prioritize the final categories
and achieve consensus. An alternative sequence may consist of stages of

diverge (brainstorm or collect ideas), converge (consolidate, or make some
sense of the ideas), evaluate (typically vote in some fashion), debate or lobby
(to gain a better understanding), and finally organize the results (to develop
presentable output).

Traditionally, idea generation has been seen as a group task. Techniques
have been designed to facilitate the sharing of ideas and the refinement of
ideas generated by other individuals, although techniques which helped the
individual problem solver come up with more or better alternatives have also
been studied.

8.3.2 COMMON COMPONENTS IN IDEA PROCESSORS

A survey of idea processors can be found in [Schorr 1995]. Although the
structure of idea processors highly vary, some common components can be
found. A typical idea processor usually consists of the following:

• a user interface;
• an idea generator;
• an idea organizer;
• an idea base;
• an idea presentor;
• a computer network; and
• supporting components (such as an editor, a visualization tool, etc.) .

Figure 8.1 depicts the components (except the computer network) in a
typical idea processor. In this figure, boxes denote components directly related
to functionality of idea processors, while ovals indicate components related to
user interface. Arrows are used to indicate major connections between
components. Supporting components can be used in various ways, and are
thus not connected to other components by arrows.

Figure 8.1 Components in an idea processor

8.3.3 HOW IDEA PROCESSORS WORK

Many idea processors rely on brainstorming techniques. Directly related to
this is the rearrangement heuristic: ideas and thoughts are solicited from the
user(s), followed by a possible randomization, and then rearranged into topics

User
 User

Idea
Base

Idea
generator

Idea organizer

Supporting
Components

Idea
Presentor

User
interface

later. The Gestalt psychologists suggest that creative thinking proceeds neither
by piecemeal logical operations nor by disconnected associations, but by more
determinate restructuring of the whole situation. Creativity lies in the ability to
redirect a line of thought taken in solving a problem. We can gain useful
insights into problems by making use of computer programs that help us to de-
structure our thinking and then to restructure it in a different way.

Categorically, creative thought can be viewed as responses from two types
of mental processes: generative and exploratory [Finke, Ward and Smith
1992]. Within the generative mode, divergent ways of thinking, including
remote association and pattern switching, produce novel, unique concepts. In
the exploratory mode, convergent thought such as elaboration or successive
refinement reformulates a unique concept into a meaningful and valuable
response. The nature of the decision task defines which mode is likely to
dominate response formation [Finke, Ward and Smith 1992].

Although commercial products are abundant, some idea processors may
have an exploratory focus. They are developed either for practical applications
or serving as research prototypes. Rather than ask open-ended questions or
offer lists of generic ideas, they provide a means for users to embellish,
emphasize, and polish ideas. For example, the user may be given a chance to
type concepts into the so-called idea-boxes, which could then be linked
laterally or hierarchically. Visually clustering the idea symbols on screen
allows the user to see emerging relationships, thought patterns, and terms.

8.3.4 THE NATURE OF IDEA PROCESSORS

Idea processors are developed to assist human thinking, including idea
generation and organization. This task is a very special kind of symbolic
problem solving, and is of an open-ended nature. In order to assist, enhance,
and amplify human intelligence, studies in psychology (some are from folk-
psychology), management science, as well as computational intelligence, have
served as useful sources and have made important contributions.

Creative problem solving has been commonly viewed as a multistage
process. The following stages are involved: preparation, incubation (a part
conscious, part unconscious deliberation and idea finding phase), illumination
(the moment of recognition when an idea has been found), and verification.

Ideally, one might like to see a programmed or programmable idea
generation procedure, although such a procedure may seem antithetical to the
very concept of creativity. Nevertheless, there are a number of heuristics to
facilitate problem structuring and idea generation. For example, several
heuristics focus on "asking the right questions," while other heuristics involve
linking the present problem with a remote context.

Techniques for brainstorming can be viewed as various kinds of heuristics
to stimulate human thinking. Some idea processors intend to help users to take
a fresh look at problems by guiding what may be a user's otherwise
undisciplined intuition through a series of problem-solving exercises. Some of
these programs deliberately force people to think in nonlinear, non-logical,

playful ways. The idea behind them is to divert one's thinking from the
channels that day-to-day work has forced it into, sparking new ideas and new
ways of thinking. Others focus one's attention on the psychological aspects of
overwork, such as motivation, stress, and depression. Guided problem-solving
supplies frameworks into which a person plug his ideas. The main advantage
of computerized, guided problem-solving is that the programs will prompt a
user for his ideas in a thorough manner.

As discussed in Chapter 2, problem solving in computational intelligence is
conducted as state space search. It has been noted that for a given set of
variables and processes operating within a bounded context or focus, any
computational model will construct a bounded state space. Creative design can
be represented in such a state space by a change in the state space. Recent
development in computational intelligence has also emphasized knowledge-
based approaches. Frequently, new ideas are sparked by reviewing old ones.
In order to achieve the goal of assisting human thinking, idea processors
usually perform extensive search in "memories," including large databases,
knowledge bases, or text bases. New ideas may be produced by summarizing
or reorganizing unorganized chunks in such memories.

In a large degree, computational intelligence is about knowledge
representation and reasoning. In contrast, idea processors usually set emphasis
on the broader sense of thinking instead of reasoning, As defined in
dictionaries, the most basic meaning of thinking is "to have as a thought;
formulate in the mind." Although both computational intelligence and idea
processors are concerned with using computers to achieve creativity, the role
of idea processors in creative thinking is quite limited: they can only generate
ideas that are the starting point of a lot of work which needs be done by
human beings.

Due to these different aspects and different emphasis, idea processors may
employ methods quite different from computational intelligence. For example,
instead of developing efficient searching algorithms for reasoning, idea
processors may rely on much less sophisticated methods (e.g., random
combination or permutation) to generate ideas, although computational
algorithms (such as genetic algorithms) may also be used. Academia research
work in computational intelligence is not around the study of divergence.

Nevertheless, some overlap exists between the study of computational
intelligence and the practice of idea processors. It is noted that in the
computational intelligence research community, efforts at modeling discovery
processes have sometimes been aimed at developing a theory of human
discovery, sometimes at constructing systems that can, in collaboration with
scientists autonomously, engage in discovery work. Some interactive software
and database search strategies have been developed to facilitate the discovery
of previously unknown cross-specialty information of scientific interest. The
software can help to find complementary literatures and reveal new useful
information that cannot be inferred from either set alone.

8.4 RETROSPECTIVE ANALYSIS FOR SCIENTIFIC
DISCOVERY AND TECHNICAL INVENTION

8.4.1 RETROSPECTIVE ANALYSIS OF TECHNICAL INVENTION

An aspect of idea processors is that they are more directly related to
everyday thinking rather than scientific thinking. However, there are strong
similarities between everyday thinking and scientific thinking, an issue to be
discussed here.

Although scientific discovery and technical invention have different aspects
or emphases: the task for discovery is to reveal or uncover some existing
features or relationships; while the task for invention is to generate new
solutions (or possibly generating new problems as well), they share some
common concerns. There are some famous landmark programs in
computational intelligence history [Langley, Simon, Bradshaw and Zytkow
1987].

In computational intelligence, computational creativity has been studied
along with both the directions of discovery and invention. In a discovery
system, given an appropriate set of data or a database, a clever computer
program can "re-discover" important scientific laws [Langley, Simon,
Bradshaw and Zytkow 1987; Piatetski-Shapiro and Frawley 1991]. In
contrast, generative systems exemplify the study along the direction of
invention [Boden 1990].

Computerized discovery and invention systems have much more
sophisticated structure than idea processors. Although some techniques may
be eventually incorporated into some idea processors, most will not. The real
reason to study computational aspects in invention and discovery largely lies
in the analysis of the thinking process behind invention and discovery. For
this purpose, retrospective approaches are frequently used to trace the mental
processes involved in invention and discovery. Such analysis may produce
useful hindsight serving as heuristics. These heuristics can then be used in
generating new ideas for idea generation, or meta-idea generation.

Creative studies are a way of cultural self-inquiry: Explaining creativity
would mean for a culture to be able to transcend itself and look at itself from
the outside [Dartnal 1994]. This can be carried out at a high, philosophical
level; but more directly related to our interest, detailed studies in various
concrete knowledge domains are important. Two fundamental questions that
need to be answered in technical invention are whether we can describe
invention in a general way, and whether we can extract principles (heuristics)
of invention from particular cases that have some generality across inventions
[Weber and Perkins 1992]. To illustrate, consider heuristics which are
concerned with join, an activity which combines several things together if
they share some common part. For example, a claw hammer is the join of a
striker head and a claw that share a common handle. Observations like "what
the striker part of the hammer will do, the claw will undo, and vice versa" may
suggest the inverse join heuristic: "Combine only those tools or ideas that are

inverses of one another." [Weber and Perkins 1992]. Heuristics obtained
through retrospective analysis, such as the join heuristic and the invention
cycle mentioned above, can be incorporated into knowledge bases of idea
processors. Within computer science, [Dasgupta 1994] provided an
explanation on Maurice Wilkes' invention of microprogramming; Here are
some of Dasgupta's hypotheses used in his study:

• invention as a goal-directed endeavor, and goals as working
hypotheses in inventive design;

• the gradualistic nature of an insight;
• bisociation or the combining of ideas;
• creative processes are reasoning processes;
• the creative agent is not only knowledge-rich, it also has the

capability to freely and associatively wander about the
knowledge space and retrieve whatever tokens seem related to
the goal at hand;

• the process of inventing artifactual forms (or creating original
designs) in the artificial sciences is cognitively indistinguishable
at the knowledge level from the process of inventing theories or
discovering laws in the natural sciences.

As a more general study, [Simonton 1984] noticed that the greatest thinkers
in the Western philosophical tradition have tended to be unrepresentative of
their times. The most eminent thinkers are oddly backward-looking in their
ideas. They are more representative of the previous generation's ideological
consensus than of those of present or succeeding generations. Notice that
these backward-looking people have made a profound impact on the
generations beyond them. Therefore, the above citation seems to suggest that
genius people nurtured themselves using what they have learned from the past
to guide their activities for the future.

The field of creativity needs to make room for commonplace inventions.
When examined on a conceptual basis, these simple implements reveal a rich
set of concepts and principles that provide a first approximation to a
framework of invention and synthetic thinking. Invention draws on a variety
of thinking modes: analysis, evaluation, decision making, problem finding and
problem solving. What makes invention different from many other modes of
thinking is its emphasis on synthetic thinking, that is, the ability to build
complexity out of simpler ideas or components. What is needed is an explicit
framework and representation for understanding and talking about invention
and synthetic thinking. To summarize the common patterns behind invention,
Robert Weber proposed the "Evaluation → Fix→ Produce" cycle [Weber

1996].
The heuristic rules of such acquired knowledge can be used along with

domain knowledge to improve the power of inference. Interesting results can
be obtained by developing some useful operators from the heuristics, and by
combined use of these operators. For example, we may consider the inverse

of an activity, and combine it with join. This illustrates the motivation of an
invention algebra, as briefly discussed in [Chen 1997a].

8.4.2 RETROSPECTIVE ANALYSIS FOR KNOWLEDGE-BASED
IDEA GENERATION OF NEW ARTIFACTS

When comparing idea processors with theoretical studies in computational
intelligence research, we may notice that although both divergence and
convergence techniques are important for idea processors, various divergence
techniques around brainstorming have been the soul of idea processors. Idea
processors deal with idea generation and organization only (rather than
solving the entire problems), they are typically application-driven, with little
care of their theoretical foundation. The methods used by idea processors are
usually vivid and colorful, although they are simple and shallow. In contrast,
divergence has not been in the center of computational intelligence studies.
Rather, by developing sophisticated algorithms, computational intelligence
researchers have pursued more rigorous approaches to solve entire problems
(not just for idea generation), and furthermore, to explore the nature of
creativity. Although the ultimate goal of computational intelligence studies is
still for application, a more direct goal is to establish a good understanding of
intelligence and a sound theoretical foundation of computational creativity.

This comparison suggests an alternative approach for computational
creativity support. Our purpose is still to generate new ideas in a creative
manner. We still want to keep the vivid and colorful aspects of idea processors
to support divergent thinking. However, we hope that ideas will be generated
in a more controlled manner, which should be supported by well-established
techniques in computational intelligence. In other words, the activity of idea
generation itself needs a better foundation. Retrospective analysis can serve
this purpose for idea generation of new artifacts. In addition, this process can
be largely computationalized. In fact, retrospective analysis suggests a
knowledge-based approach for idea generation. There are two kinds of
knowledge involved, both of which can be captured by retrospective analysis:

(a) knowledge of existing artifacts;
(b) knowledge of heuristic rules needed for invention.

Although most existing idea processors also use knowledge-based
approaches, the proposed approach is unique due to its natural connection
with frame structures. Since frame systems readily lend themselves to object-
oriented techniques (as discussed in Chapter 6), we can take advantage of
these techniques to achieve our goal of generating ideas in a controlled
manner. For example, object-oriented features allow us to generate a new
artifact with multiple parents, and bisociation of different thoughts can thus be
realized through multiple inheritance. By combining different components and
operations in different ancestors for a newly generated artifact, multiple
inheritance supports divergent thinking. In addition, since only those
combinations which are involved in multiple inheritance will be generated,

computational exploration can be avoided, and convergence can be achieved
in a more effective manner.

8.4.3 A PROLOG PROGRAM TO EXPLORE IDEA GENERATION

In this section, we provide a sketch of a Prolog program for idea generation
(as outlined in the previous section).

8.4.3.1 Frames and inheritance in artifact representation
Technical invention may involve many heuristic rules; here we will only

briefly touch one heuristic (the join heuristic) used in technical invention of
artifacts [Weber and Perkins 1989]. The join heuristic suggests to use a frame
join operation to create general new entities that integrate the properties of the
simpler components by combining simpler frames.

We treat each artifact as a conceptual graph (CG, as discussed in Chapter 6)
describing its structure, functions and various features. A library of CGs
consists of known artifacts. The task of invention requires to construct new
artifacts from these existing artifacts. The task of artifact invention can be
viewed as: given the user specification of a new tool to be constructed (the
specification can be viewed as an incomplete artifact with incomplete
information to be filled), determine which existing CGs partially match the
specification, and then create a CG as a combination (or partial combination)
of these CGs. A new frame representing the CG of a proposed artifact can be
constructed, with the retrieved frames as its multiple parents. The new frame
is the result of the invention [Chen 1999b].

As an example, let us consider how to describe a knife as an artifact.
Structurally, a knife has a blade and is made of metal. Functionally (or
operationally), a knife can be used to cut vegetables. We use paired squared
brackets to represent a concept node and a paired parentheses along with
arrows to represent a conceptual relationship. The conceptual graph in Figure
8.2 represents this artifact.

Figure 8.2 A conceptual graph representation for an artifact

This conceptual graph can be represented in Prolog as a frame. The Prolog
predicate is basically a straight translation from the conceptual graph with
minor revisions (due to implementation related-considerations from Prolog):

 toolframe(name(artifact,knife),isa(artifact,tool),
 [component(knife,blade),
 material(knife,metal)],
 ops(knife, [cutvegetable]),

 → (isa) → [tool] → (material)→ [metal]

 [artifact] → (name) →[knife] → (component) → [blade]

 → (operation)→ [cutvegetable]

 []).
As a slightly more complicated example, consider the definition of scissors

as an artifact. A pair of scissors is a cutting implement of two blades joined by
a swivel pin; it can be opened, closed and can be used to cut paper. We can
draw a conceptual graph to represent it and further implement it as a frame in
Prolog. The frame definition can be found in the Prolog code appearing in the
next section.

The collection of frames forms a library of artifacts, which can be used for
recognition purposes. But a more interesting issue is to generate (or create)
new artifacts using existing artifacts.

Each artifact is a tool-frame with arguments of Name, Parent, Structure, and
Operations. The most important part is operations, which characterize the
functionality of the tools, and selecting various operations from different
parents, new tools can be generated later (through multiple inheritance). The
following are two examples of tool-frame in the knowledge base. The first
tool-frame is an artifact called scissors, with components such as two cutting
edges and a swivel pin which connects the two edges. Operations available for
scissors including cutting paper, open and close. The second tool-frame is a
knife, which has a blade as its component, and has the operation of cutting
vegetable.

toolframe(name(artifact,scissors),isa(artifact, tool),
 [component(scissors,cuttingedge1),
 component(scissors,cuttingedge2),
 component(scissors,swivel-pin),
 connect(swivel-pin,cuttingedge1),
 connect(swivel-pin,cuttingedge2),
 material(scissors,metal)],
 operations(scissors, [cutpaper,open,close])).

toolframe(name(artifact,knife),isa(artifact, tool),
[component(knife,blade),
 material(knife,metal)],
 operations(knife, [cutvegetable])).

Generation of new ideas first requires retrieval of knowledge of existing
tool-frames. This can be done using the following code (adopted and revised
from [Luger and Stubblefield 1998]):

retrieve_multiple(Op, [Parent|_]) :- retrieve(Op, Parent).
retrieve_multiple(Op, [_| Rest]) :- retrieve_multiple(Op,
Rest).

retrieve(Op, Obj) :- toolframe(name(_,Obj), _, _, ops(Obj,
Lst_P)),
 member(Op, Lst_P).
retrieve(Op, Obj) :- toolframe(name(_,Obj),_,_,_,Lst_d),
 member(Op, Lst_d).
retrieve(Op, Obj) :-
toolframe(name(_,Obj),isa(_,Parent),_,_),
 retrieve(Op, Parent).
retrieve(Op, Obj) :-
toolframe(name(_,Obj),isa(_,List),_,_),
 retrieve_multiple(Op, List).

Finally, idea generation for new tool-frames takes place. The following
Prolog is used to retrieve operational functions to recognize potential parents
so that a new parent tool-frame class can be created through multiple
inheritance:

newparent([], L, L).
newparent([H|T], OL, L) :- retrieve(H, O),
 append([O], OL, L1),
 newparent(T, L1, L).

We now illustrate how the Prolog program can be used for new idea
generation. The following is a sample execution of the program.

 ?- create(L).
input a desirable operation for new artifact, end
to stop:
cutvegetable.
input a desirable operation for new artifact, end
to stop:
cutpaper.
input a desirable operation for new artifact, end
to stop:
end.
NEW FRAME GENERATED:
toolframe(name(newframe,invention_1),
isa(newframe,[scissors,knife]),[],[]).
L=[scissors,knife]

In this example, the user specifies desirable operations of a new artifact:
cut vegetable and cut paper. The program is able to search for existing
artifacts which provide these operations, and uses these artifacts as parents to
generate a new artifact. The search process is carried out to find parents for
multiple inheritance. The resulting frame indicates a new artifact which has
two parents (scissors and knife), from which it can inherit properties of both
parents to provide all the desired operations. This example can be considered
as a highly simplified scenario for the invention of a Swiss army knife. (To
focus our discussion, the slots of structure, operations and default values are
intentionally left as empty lists.)

As an example of the analysis, here we briefly describe how the size of
tool-frame knowledge base would affect convergence and divergence of idea
generation. Inventing new artifacts based on existing knowledge in the tool-
frame base is limited by the size of the existing knowledge base. Using a small
knowledge base, the program can only generate simple new artifacts limited
by the set of existing operations defined in all tool-frames. A large library of
knowledge increases the chance of divergent ideas. However, as the
knowledge base expands, the possibility of conflicting ideas or artifacts rises.
It takes longer time to process the increased knowledge base to create new
ideas. A related factor is user's satisfaction. A larger knowledge base offers
better opportunity for generating exciting ideas, but the large amount of new
ideas may also cause confusion to the user. To achieve a good balance
between divergence and convergence, various control mechanisms should be
developed and tested.

8.5 COMBINING CREATIVITY WITH EXPERTISE

8.5.1 THE NEED FOR COMBINING CREATIVITY WITH EXPERTISE

Creativity and expertise have been treated as separate issues in
computational intelligence. A conjecture is that pursuing creativity or
resorting to expertise have quite different philosophical roots. In fact, expert
systems can even be viewed as a reactionary activity of creativity in the 19th
century. As noted by [Friedel 1992], for most of the 19th century, technical
novelty was largely seen as the product of human ingenuity and was closely
associated with the "genius" of individuals and of the nation or race. In the
20th century, by contrast, we have come to look for new technology from
institutions and individuals who are characterized not by their creativity,
imagination, and brilliance but by their ability to marshal expertise.

However, there is a strong indication of combining creativity with
expertise. It would be ideal to store useful heuristic knowledge demonstrated
in creative activities across many application domains. It may also be
beneficial to store heuristic rules to creatively utilize existing domain
knowledge (namely, expertise) to enhance or to improve the quality of the
answers (or conclusions, decisions, etc.) provided by the systems. The
strength of knowledge-based systems comes from two aspects: the inference
power of the systems and the rich knowledge stored in the systems. The result
of the marriage between creativity and expertise, or heuristic knowledge
related to creativity, may contribute to such systems in both aspects: as an
enrichment of the inference power, and/or as an extension of the knowledge
possessed by the system.

8.5.2 STRATEGIC KNOWLEDGE AS KNOWLEDGE RELATED TO
CREATIVITY

To make our discussion more focused, we will consider a kind of
knowledge related to creativity which is the wisdom and heuristics as
demonstrated in non-conventional problem solving processes. It is different
from domain-dependent knowledge because it is not restricted to any specific
application domain. It also differs from non-domain knowledge such as meta-
knowledge (which is knowledge about knowledge, more discussion in Chapter
14) or commonsense knowledge (which is the knowledge and reasoning
methods possessed by every school child, see Chapter 5). In order to make the
study of creativity matchable with the intensive knowledge as used in
knowledge-based systems, an innovated approach is needed to focus on
knowledge related to creativity. However, this kind of knowledge will not be
simply referred to as creativity knowledge, because possessing such
knowledge does not guarantee creativity (since it consists of heuristic rules)
and creativity is not a pure cognitive activity (for example, social factors may
play an important role). In addition, since in most cases we are not pushed to
invent new things or ideas, this kind of knowledge is of secondary importance

(not as fundamental as domain knowledge which is important in solving
various real-world applications in our daily life), but could be very useful.

Due to the lack of an appropriate term, we will use the term strategic
knowledge to refer to the heuristic knowledge related to creativity. The
creative knowledge demonstrated in unconventional problem solving in
various creative activities usually presents good strategies to achieve the goals
implied in the problem statements.

We now point out the need for studying a kind of creative knowledge
concerning strategic heuristics. The issue of acquiring creative knowledge
from folklore is discussed in some detail and is illustrated by some examples.
The impact of such knowledge on the architecture of knowledge-based expert
systems is also discussed.

Knowledge-based systems (particularly expert systems) have become very
popular in various applications. A well-known project which is still in
progress is the CYC project [Lenat and Guha 1990]. In addition, machine
learning techniques have been incorporated for automated knowledge
acquisition of knowledge-based systems [Michalski 1983].

Knowledge is an important aspect of intelligence; creativity is another one.
However, although sometimes expert systems may produce unpredicted
results, the basic philosophy is reusing existing knowledge rather than creating
new knowledge. Expert systems are not necessarily creative, and in general,
they are not. In fact, expert systems are aimed to reuse experts' knowledge
and to reuse reasoning process as well. Reuse also exists at even higher levels;
for example, by developing expert system shells. (This is not to say that the
activity of reuse itself cannot be creative. But this is not an issue to be
investigated here.)

Creativity has been studied in computational intelligence in decades,
although in most cases, it was not studied in the context of knowledge-based
systems. One possible reason is due to the complex nature of creativity. The
recent discussion [Stefik and Smoliar 1995] around Margaret Boden's book
The Creative Mind [Boden 1990] reveals how little we know about creativity,
and how much is yet to be done.

We notice that there is a need to study a kind of knowledge which is closely
related to creative activities. It is different from domain-dependent knowledge
because it is not restricted to any specific application domain. It also differs
from non-domain knowledge such as meta-knowledge, because it is not
knowledge about knowledge. In addition, it is not commonsense knowledge
because the latter is the common knowledge possessed by every school child
and methods used to make obvious inference from this knowledge [Davis
1990]. The knowledge related to creativity is much more complicated than
this. It is the wisdom and heuristics as demonstrated in unconventional
problem-solving processes.

8.5.3 STUDYING STRATEGIC HEURISTICS OF CREATIVE
KNOWLEDGE

However, heuristic knowledge itself may not necessarily imply creativity.
In order to combine creativity with knowledge as used in knowledge-based
systems, there is a need to study heuristics which are related to creative
knowledge. Since creative knowledge involved in intelligent behavior is huge
and diverse, to focus our study, we will examine a kind of creative heuristics
which may provide us useful hints to achieve our goal in an unconventional
way. Such knowledge can extend our domain knowledge, and enhance our
reasoning ability. To distinguish this kind of heuristic knowledge from other
forms of creative knowledge, due to the lack of an appropriate term, in this
paper we will informally refer it as strategic heuristics. Note the meaning of
the word "strategic" used here corresponds to the meaning of noun strategy
which is "the art or skill of using stratagems as in politics or business," while a
stratagem is "a scheme designed to obtain a goal" (both from The American
Heritage Dictionary , 1983).

In addition to technical invention, creative ideas can also be found in other
kinds of human intelligence activities, including the wisdom as spotted in
folklores, proverbs, idioms, folk tales, legends, etc. in various cultures. In the
rest of this paper we will examine some examples from folk tales. Following
the lead of Weber and Perkins, we will examine some examples of folk tales
and discuss how to obtain strategic heuristics from them. For example, how
can you weigh an elephant without using a large size scale? How can you use
a boat, a regular size scale, and a rich supply of rocks to measure the weight of
an elephant? Folk tales like this reflect unconventional problem-solving
techniques and provide a vivid source of creative knowledge.

In particular, in the following we will use an example taken from Chinese
folk tales to illustrate why folklore is a resource for studying creativity. You
want to know the weight of an elephant, but you do not have scales large
enough to do the job. The solution provided by Cao Chong (the sun of a
famous general at that time) can be sketched as the following informal
algorithm. (Note that we cannot directly use the divide and conquer method,
but we can apply a similar idea.)

Elephant weighing algorithm:
Input: an elephant, a boat (which is strong enough to hold the elephant), a
river to hold the boat (along with the elephant), enough supply of rocks, and a
scale which can weigh rocks.
Output: the weight of the elephant.
Method:

1. Put the elephant in the boat, make a notch at the waterline.
2. Remove the elephant from the boat.
3. Put rocks into the boat until they reach the notch made in Step 1.
4. Loop

• Each time remove a portion of rocks from the boat and
weigh them in the scales;

• add up the weights
until all rocks are removed and weighed.
5. Return the final weight of the rocks, which is the weight of the
elephant.

The method used in this algorithm employs the typical idea of divide and
conquer, but other heuristics are also used. The heuristics learned here can be
described at different levels. At one extreme, we may use direct variablization
to replace the constant "elephant" by a variable "thing." This is a simple use
of generalization in induction [Michalski 1983]. At a much higher level,
generalization can be used in full scale for all constants, including the
measurement itself (that is, measurement can be in any form, not restricted to
weighing). From this discussion, we may have the following two heuristic
rules.

• Replacement heuristic (lower level abstraction): If a thing is too
heavy to be weighed, you can put it in a boat, mark the
waterline, replace the heavy thing by rocks, remove a portion of
the rocks and weight, and take the sum.

• Replacement heuristic (higher level abstraction: In case that
you want to measure a thing A which is not in manageable size,
if there is another thing B which is of same measurement as A
(without actually measuring) but can be divided into manageable
pieces or components, then you can replace A by B, measure
these pieces separately and take the sum.

Other examples of strategic heuristics can be found in [Chen 1997b].

8.5.4 DIFFICULTIES AND PROBLEMS IN ACQUIRING STRATEGIC
HEURISTICS

Based on what we have discussed in this section, it is time to point out
some difficulties and problems in acquiring strategic heuristics.
• First of all, not every folk tale has strategic value; in fact, many of them

may not. So, how to determine the heuristic value of a folk tale?
• The next problem is, suppose a folk tale is determined to have some

strategic value; how actually extract the folk tale, and make it
computationalized?

Just like the case of inductive learning, another problem is over-
generalization (namely, over-simplification). That is, the heuristics extracted
from the folk tale may be too abstract, and the vivid color of the original story
is lost. In this case, the heuristics extracted may not be as useful as one might
have expected. In addition, at current stage, how to extract the heuristics
from a given folk tale is largely an art. For the time being, these heuristics can
be entered manually by the programmers. However, in the long run, this
process should be automated. To avoid over-generalization and manual

heuristic entry, an alternative is to store original folk tales in a separate
knowledge base. But for making use of the stored tales, an on-line analysis
and understanding of stored folk tales is required, which could pose a very
challenging task in natural language processing.

The reader may have also noticed that the heuristics learned from folk tales
may not be accurate enough. In order to store strategic heuristics so that they
can be useful for inference, the basic requirement is to express those rules in a
(at least somewhat) formal way.

There are still some other difficulties. Our selection of folklore as the
source of creative knowledge seems to be somewhat arbitrary. The reader may
wonder that there may be a large number of sources for strategic heuristic
knowledge. This is a very interesting observation. It is true that there may be
many other possible sources for the study of creativity (one of them could be
{\em humor}, for example). However, this does not necessarily mean that the
number of sources is endless, because although human intelligent behavior
can be characterized into many categories (folklore is one of them), the
number of such categories is finite. But how to identify these sources? Are all
these sources useful to us at all? Can the knowledge acquired from these
sources be computationalized or does it need to be computationalized? We
may ask ourselves endless questions, simply because our understanding about
creative knowledge is so little. However, various problems encountered in
creative knowledge acquisition are no excuse for not studying strategic
heuristics of creative knowledge at all. On the contrary, they provide an
excellent challenge to researchers and practitioners in computational
intelligence and cognitive science.

8.5.5 THE NATURE OF STRATEGIC HEURISTICS

Another important issue which must be addressed here is the nature of
strategic heuristics and its relationship with the heuristics discussed earlier.
Knowledge related to creativity can be acquired by an analysis of inventions
in history, folklore, as well as other sources. However, we should keep in
mind that possessing this kind of knowledge does not guarantee creativity
(since it consists of heuristic rules). Besides, we should also remember that
creativity is not a pure cognitive or mental activity, it is mixed with other
factors (such as social factor). In addition, since in most cases we are not
pushed to invent new things or ideas, this kind of knowledge is of secondary
importance (not as fundamental as domain knowledge which are important in
solving various real-world applications in our daily life), but could be very
useful. Time has come to incorporate this kind of knowledge into knowledge-
based systems.

Notice that this kind of creative knowledge is knowledge at the object level
rather than the level of controlling the use of knowledge. If we follow the
traditional separation of control knowledge used by the inference engine and
the domain knowledge, then this kind of knowledge should be placed with
control knowledge. However, knowledge base usually stores domain

knowledge, which is different from the creative knowledge discussed here.
Such knowledge also differs from meta knowledge, which is related to control
knowledge. Therefore as to be addressed in the next section, the incorporation
of creative knowledge may have impact on the architecture of expert
systems.

8.5.6 TOWARD KNOWLEDGE-BASED ARCHITECTURE
COMBINING CREATIVITY AND EXPERTISE

If knowledge is power, and if there is a need to code encyclopedias into the
computer to be stored as knowledge, then why not store strategic heuristics as
well? Due to the unique nature of creative knowledge, it should be stored in a
separate knowledge base (separate from domain knowledge, meta-knowledge,
commonsense knowledge, etc.). Since acquiring such knowledge may be time
consuming, the creative knowledge base can be constructed in an incremental
manner. Introducing such a component will have some impact on the
architecture of knowledge-based systems. Note that this perspective is
complementary to the issue of experience-based creativity [Levinson 1994],
which is concerned with establishing some medium by which experience can
be combined to create the new form of information so that it will be deemed
as creative. The combination rule should be based on simple principles, and
the creative act can be implemented and viewed as a syntactive, a largely
domain-independent process.

The ultimate goal of acquiring strategic heuristics and to store such rules is
to use them as an aid to enhance the functions of knowledge-based systems.
They can be combined with domain knowledge in various application
domains so that interesting and novel conclusions or suggestions can be made,
or the quality of the answer produced by the system can be improved. In
general, creative knowledge will be consulted only when it is needed. For
example, in case domain knowledge is not available (thus no conclusion can
be made), creative knowledge may be consulted. Creative knowledge can also
be used to deal with conflict resolution (that is, several rules in a rule-based
system competing to be fired). In some cases, creative knowledge may be
combined with domain knowledge to improve the quality of the answer.

Experienced researchers in human creativity have warned us that none of
the methods of invention described here, nor any of the related heuristics, will
mechanically or computationally produce inventions. Human judgment is very
much required [Weber 1992]. However, as pointed out by [Schank and Foster
1995], "(s)ome would argue that creativity is too broad and ill-defined to
possibly hope for the development of a mechanistic theory. AI's standard reply
is and has been: well, then, let's bite off a small chunk of it, come up with a
simple theory (maybe even a rather stupid one), test it out, see where it breaks
down, and try again."

Another aspect is how to incorporate creativity into the general task of the
knowledge acquisition itself (which is generally considered as the bottleneck
of knowledge engineering). Existing knowledge acquisition approaches

typically provide users some existing tools for knowledge acquisition, leaving
very little room to the users to do creative work. It would be interesting to
bring creativity into knowledge acquisition. Since comparing with the task of
acquiring creative knowledge, this task is better defined, we have started
implementing a prototype system, a self-evolving tool which is able to
improve its behavior over time. The tool allows the user (a domain expert) not
only to enter new knowledge, but also to specify what kind of knowledge
should be acquired and what kind of questions should be asked. By this way,
an expert in a knowledge domain can always recast the tool for his own need
so that "everybody gets whatever he wanted."

With the hope that creative knowledge can be used to enhance the
reasoning ability of knowledge-based systems, an extended expert system
model can be developed (to be described in Chapter 14).

SUMMARY

In this chapter we discussed two related issues of computer assisted
intelligence and the relationship between creativity and expertise. Since the
topic covered in this chapter usually cannot be found in textbooks, in the
following we provide some additional issues which may be interesting to
some readers.
• Computation tricks. One aspect of intelligence we have not discussed so

far is intelligence with trick. Computational tricks reflect such human
reasoning with trick as "make a feint to the east and attack in the west."
One may wonder whether notorious things like tricks deserve any effort
of computation at all. Nevertheless, computational tricks have been
discussed in computer world for decades, and Turing test has been
considered as the design of computers which are able to fool human
beings. Computational tricks were discussed in [Mauldin 1994, Sun and
Weber 1997a, b]. What is the nature of computation tricks? Are they
"legal"? Is it possible to use them? These are the among the numerous
questions need to be answered.

• Computers as stimulant. Computers are used as tools to enhance human
creativity. Knowledge-based systems, inductive learning and other
techniques are used by social scientists to analyze data and identify
patterns of behavior. These techniques have complemented the way
humans think and thereby extended their analytical abilities -- enabling
social scientists not to work just faster but smarter [Mills 1994].

Emotional intelligence: Another interesting topic is emotional intelligence,
which strongly depends on the cultural environment, and is thus very different
from "conventional" intelligence. Emotion consists of anger, sadness, fear,
enjoyment, love, surprise, disgust, shame, and others. For more details, see
[Mayer and Salovey 1993, Mayer and Salovey 1997].

SELF-EXAMINATION QUESTIONS

1. In the beginning of this chapter we mentioned the different tasks of
computational creativity and computer assisted human intelligence. Can you
provide a brief summary about their relationship?
2. The Prolog program introduced in this chapter has some problems. Can
you point out some undesirable features related to inheritance?
3. Select one of your favorable folk stories and analyze the strategic
knowledge implied by it.

REFERENCES

Boden, M., Creative Mind: Myths & Mechanisms. Weidenfield and Nicolson,
London, 1990.
Boden, M., Creativity and computers. Cybernetics and Systems, 26, 267-293,
1995.
Chen, Z., Combining creativity and expertise. Cybernetics and Systems, 28,
327-336, 1997a.
Chen, Z., Acquiring creative knowledge for knowledge-based systems,
Journal of Intelligent Systems, 6(3/4), 179-198, 1997b.
Chen, Z., Idea Processors, Encyclopedia of Electrical and Electronics Eng.
(Webster, J. G. ed.), John Wiley, New York, Vol. 9, pp. 467-480, 1999a.
Chen, Z., Retrospective analysis for knowledge-based idea generation of new
articrafts, Knowledge-based systems, 1999b (to appear).
Dartnall, T. (ed.), Artificial Intelligence and Creativity: An Interdisciplinary
Approach, Kluwer, Boston, 1994.
Dasgupta, S., Creativity in Invention and Design: Computational and
Cognitive Explorations of Technological Originality, Cambridge University
Press, New York, 1994.
Davis, E., Representations of Commonsense Knowledge, Morgan Kaufmann,
Palo Alto, CA, 1990.
Finke, R. A., Ward, T. B. and Smith, S. M., Creative Cognition: Theory
Research and Applications, The MIT Press, Cambridge, MA, 1992 .
Friedel, R., Perspiration in perspective: Changing perceptions of genius and
expertise in American invention, in Weber, R. J. and Perkins, D. N. (eds.),
Inventive Minds, 11-31, 1992.
Holsapple, C. W. and Whinston, A. B., Decision Support Systems: A
Knowledge-Based Approach, West Publishing, Minneapolis/St. Paul, 1996.
Koestler, A., The act of creation. New York, Macmillan 1974.
Langley, P., Simon, H. A., Bradshaw, G. L. and Zytkow, J. M., Scientific
Discovery: Computational Explorations of Creative Process, MIT Press,
Cambridge, MA, 1987.

Lenat, D. B. and Guha, R. V., Building Large Knowledge-Based Systems:
Representation and Inference in the CYC Project, Addison-Wesley, Reading,
MA, 1990.
Levinson, R., Experience-based creativity, in Artificial Intelligence and
Creativity: An Interdisciplinary Approach (T. Dartnall, ed.), 161-180, 1994.
Luger, G. F. and Stubblefield, W. A., Artificial Intelligence: Structures and
Strategies for Complex Problem Solving (3rd ed.), Addison-Wesley Longman,
Harlow, England, 1998.
Mauldin, M. L., Chatterbots, Tinymuds, and the Turing test: Entering the
Loebner prize competion, Proceedings AAAI-94, 1994.
Mayer, J. D. and Salovey, P., The intelligence of emotional intelligence.
Intelligence, 1993, 17(4), 433-442.
Mayer, J. D. and Salovey, P. What is emotional intelligence? In P. Salovey
and D. Slyter (eds.) Emotional Development and Emotional Intelligence:
Implications for Educators, Basic Books, New York, 1993.
Michalski, R. S., A theory and methodology of inductive learning, Artificial
Intelligence, 20, 2, 111-161, 1983.
Mills, W. deB., Working smarter: Compuers as stimulants for human
creativity, Social Science Computer Review, 12(2), 215-230, 1994.
Osborne, A., Applied Imagination: Principles and Procedures of Creative
Thinking (3rd ed.), Scribner, New York, 1963.
Piatetsky-Shapiro, G., and Frawley, W. (eds.), Knowledge Discovery in
Databases. AAAI/MIT Press, Menlo Park, CA, 1991.
Rawlinson, J. G., Creative Thinking and Brainstorming, Westmead, England:
Gower, 1981.
Rothenberg, A., The Emerging Goddess: The Creative Process in Art,
Science, and Other Fields, University of Chicago Press, Chicago, 1979.
Schank, R. C. and Foster, D. A., The engineering of creativity: a review of
Boden's The Creative Mind, Artificial Intelligence, 219, 129-143. 1995.
Schorr, J., Smart thinking: Eight programs that help you think creatively and
plan effectively, Macworld, 11 (5), 138 - 144. 1995.
Simonton, D. K., Genius, Creativity, and Leadership: Historiometric
Inquiries, Harvard University Press, Cambridge, MA, 1984.
Stefik, M. and Smoliar, S. (eds.), The Creative Mind: Myths and
Mechanisms: six reviews and a response, Artificial Intelligence, 79, 65-67,
1995.
Sun, Z. and Weber, K., Logic with trick, Paper presented at InfoSymp'97,
Baden-Baden, Germany, Aug. 1997a.
Sun, Z. and Weber, K., Turing test and intelligence with trick, Proceedings
of 8th Ireland Conference of AI, Sept. 1997b.
Weber R. J. and Perkins, D. N., How to invent artifacts and ideas, New
Ideas in Psychology, 7, 49-72, 1989.
Weber, R. J. and Perkins, D. N. (eds.), Inventive Minds: Creativity in
technology, Oxford, New York, 1992.
Weber, R. J., Toward a language of invention and synthetic thinking,
Creativity Research Journal , 9(4), 353-368, 1996.

Young, L. F., The Metaphor Machine: A Database Method for Creativity
Support, Decision Support Systems, 3, 309-317, 1987.
Young, L. F., Decision Support and Idea Processing Systems. Wm. C.
Brown, Debuque, Iowa, 1988.

Chapter 9

CONCEPTUAL QUERIES AND INTENSIONAL
ANSWERING

9.1 OVERVIEW

In Chapter 5 we have examined different kinds of basic retrieval systems.
An intelligent agent should be able to perform interoperation among different
types of retrieval. In addition, in order to support decision making, we may
also wish an intelligent agent to demonstrate other desirable features such as
handling non-exact retrieval (as illustrated in Section 7.2). In general, an
intelligent agent should be able to answer queries in a flexible manner. For
example, in a company database, a user may want to retrieve products with
"high" profits. In a job application candidate database, a recruiter may want to
retrieve candidates with "excellent" working experience. Note that in these
examples "high" profits and "excellent" working experience are not part of the
database schema, but (hopefully) can be converted into the actual database
schema. In this chapter we will examine several issues related to this topic.
We start with a brief review of question answering systems, focusing on
conceptual query answering. It uses knowledge discovery techniques (to be
discussed in Chapter 10 and Chapter 13).

9.2 A REVIEW OF QUESTION ANSWERING SYSTEMS

9.2.1 WHAT IS A QUESTION ANSWERING SYSTEM?

Since the days of Turing test, question answering (QA) has been an
important topic in computational intelligence. Although the study of
computational intelligence has diversified far beyond the notion of intelligent
behavior proposed in the Turing test, QA remains a fundamental capability
needed by a large class of systems. It is a methodological tool to structure a
task and specify its scope using a question grammar. Note that an interesting
aspect of QA is that it may not be necessarily associated with intelligent
behavior. For example, QA has a parallel to query processing in database
management systems. However, it goes far beyond what can be achieved
using DBMS. Many analytical tasks that involve gathering, correlating and
analyzing information can naturally be formulated as QA problems. With the
recent explosion of information available on the World Wide Web, QA is
becoming a compelling framework for finding information that closely
matches user needs. Important research issues include the following [AAAI
1999]:

• Methods to rapidly construct the knowledge base of a QA system;
• Techniques to construct a KB by reuse and reformulation;
• A study of existing knowledge repositories;
• Techniques for interfacing inference techniques with DBMSs;
• Using information from external knowledge sources in QA;
• Measuring competence of a QA system;
• Answer summarization and explanation;
• Techniques for evaluating and benchmarking QA systems; and
• An evaluation of implemented QA systems.

9.2.2 SOME FEATURES OF QUESTION ANSWERING

At the beginning of Chapter 7 we briefly discussed non-exact retrieval. An
example of a fuzzy query could be: "Find the towns in the heartland that have
a low unemployment rate and have nice residence areas." This query can be
viewed as at least two ways: as a conceptual query which involves attribute-
oriented induction (see below), or as a fuzzy query, which is a query
formulated in fuzzy terms and for any of the attributes a fuzzy proposition
formed: xi is Aij. Fuzzy queries are possible to non-fuzzy databases if the fuzzy
predicates used in the queries are represented in advance by their membership
functions. A fuzzy query to a non-fuzzy database resembles matching a fuzzy
rule against crisp data, which is opposite to the fuzzy inference methods in
fuzzy systems.

In another study, a data warehouse set-up for providing approximate query
answers is discussed in [Gibbons and Matias 1998], where a theory of
information granulation and its relationship with attribute-oriented induction
is presented. Summary statistics have been used for query answering.

The above examples have shown that query answering is a multi-facet
issue. In this chapter, we will focus on the concept of query answering alone,
and use techniques mainly based on knowledge discovery in database (or
KDD). A brief introduction on knowledge discovery in databases (KDD) and
data mining will be presented in this paper. A more detailed discussion on
data mining will be continued in Chapter 10, and an examination of data
warehousing will be given in Chapter 11. Fuzzy set theory will be discussed in
Chapter 12.

9.3 INTENSIONAL ANSWERING AND CONCEPTUAL
QUERY

Our discussion on intelligent query answering starts with some basic
terminology. We will be focusing on two related terms: intensional answering
and conceptual query.

9.3.1 MEANING OF INTENSIONAL ANSWERS

An intensional answer to a query is a set of characterizations of the set of
database values that satisfy the query (the actual data retrieved are referred to
as the extensional answer.) Intensional answers are derived entirely from the
extensional information in the database. Intensional answers can be derived
using KDD techniques. KDD is concerned with the overall process and
specific techniques of the nontrivial extraction of implicit, previously
unknown, and potentially useful information from data. A more detailed
discussion on KDD and data mining will be given in Chapter 10.

An intensional answer to a query is a set of characterizations of the set of
database values that satisfy the query (the actual data retrieved are referred to
as the extensional answer.) Intensional answers are derived entirely from the
extensional information in the database [Motro 1989, 1994; Han, Huang,
Cercone and Fu 1996]). For example, for the query of finding excellent
students, an intensional answer could be some common features (such as good
GPA) shared by these students, rather than the names of these students.

Note that the intensional database as discussed in Chapter 4 is part of the
database while intensional answers are generated from the database. So their
relationship is somewhat similar to relations (which are stored tables) versus
views (which are virtual tables) in relational databases. So you should not
equate intensional database with intensional answers, although the word
"intensional" means the same thing for both (namely, non-extensional, or, "not
tuples.")

To focus our discussion, in this chapter we will only consider conceptual
query answering using a popular technique, namely, attribute-oriented
induction method for knowledge discovery in databases (KDD) [Han, Fu and
Ng 1994]. A more detailed discussion on KDD and data mining is continued
in the next chapter.

9.3.2 INTENSIONAL ANSWERING USING KNOWLEDGE
DISCOVERY

In order to understand what is an intensional answer and how knowledge
discovery can help, let us consider a student database. We want to know "the
most important features of graduate students." Note that this is an intensional
answer because we are not interested in any particular names of the students.
The following process demonstrates how an intensional answer can be
produced using a specific technique called characteristic rules. This example
follows [Cai, Cercone and Han 1991].

A characteristic rule is an assertion that characterizes the concept satisfied
by all the data stored in the database. This can be illustrated by the following
example. Suppose we have a student relation in a sample university database
consisting of the following attributes (fields): name, category, major, birth-
place and GPA. In addition, we have a concept hierarchy table which is a
concept tree organized as an IS-A hierarchy (for example, "music'' and
"history'' can be generalized into "art,'' while "junior'' and "senior'' can be

generalized into "undergraduate,'' etc.). Now we want to find out something
interesting about graduate students. A four-step algorithm for learning a
characteristic rule can be performed as follows.

• Step 1 is the extraction of the task-relevant data by performing
selection, projection, and join on the relevant relations (such as
dropping the student name attributes, since we are not interested
in individual students).

• Step 2 is the attribute-oriented induction process; generalization
should be performed on attributes by substituting each attribute
value with its higher-level concept (such as replacing "physics''
by "science'').

• Step 3 is the simplification of the generalized relation (such as
removal of duplication).

• Step 4 is the transformation of the final relation into a logic
formula.

The following is a sample rule which may be produced by the discovery
process and can be used to produce an intensional answer:

a graduate student is either a citizen born in this conutry with an
excellent GPA or a foreign student majoring in science with a good
GPA.

Notice that this rule was not explicitly stated anywhere in the database.
Rather, it is derived from the stored data. The most popular format of a
database rule takes the format of "If C1 then C2,'' or C1→ C2. In fact, a rule is
not necessary to cover all instances. If a rule is almost always correct, then it
is called a strong rule.

The algorithm described above illustrates the basic idea of knowledge
discovery in databases. According to the definition cited in the beginning of
this paper, knowledge discovery is the nontrivial extraction of implicit,
previously unknown, and potentially useful information from data. Given a set
of facts (data) F, a language L, and some measure of Certainty C , a pattern is
defined as a statement S in L that describes relationships among a subset Fs of
F with a certain ty c , su ch th at in s o me s en s e S is simp ler th an the
enumeration of all facts in Fs. A pattern that is interesting and certain enough
is referred to as knowledge; the output of a program that monitors the set of
facts in a database and produces patterns in this sense is referred to as
discovered knowledge.

A term closely related to KDD is data mining. Some people use these two
terms interchangeably. However, recently a distinction has been made so that
the KDD will be used to refer to the overall process of knowledge discovery
while the term data mining refers to the actual algorithms used in the
discovery process. A more detailed discussion on KDD and data mining is
presented in Chapter 10.

9.3.3 CONCEPTUAL QUERY ANSWERING

Conceptual query answering is concerned with the following information
need. DBMS users may want to ask general questions involving conceptual
terms which may not match the database schema or data. For example, "What
are expensive restaurants in the heartland which are frequently visited by
senior people?" Here the italicized words illustrate different cases of
conceptual terms in the user's mind. The stored data may not have an attribute
"heartland," does not have values such as "expensive" or "senior" (although
actual ages may be stored), and does not indicate frequency of visit directly
(although date of visit may be stored). Conceptual query answering should
handle these problems.

Conceptual queries are not exactly the same as intensional answers, but
they share some similar concerns. Although conceptual query answering has
been studied in the field of information retrieval, it has not been widely
studied in DBMS.

The task of conceptual (or intelligent) query answering is to map users'
conceptual queries to actual database queries and to produce answers for the
users' queries. Conceptual queries have been extensively studied in the
Information Retrieval (IR) community, and have drawn increasing attention
from the database research community as well. An example of conceptual
query is: What kind of people are first-time homebuyers who bought
expensive houses in West Omaha? Note here the term "expensive houses" is
not a database attribute nor an actual value, and thus need to be mapped to
actual database values. Note also that the term "conceptual query answering"
is closely related to some other terms (such as flexible query answering
[Barklund, Dell'Acqua and Costantini 1996] or cooperative query answering
[Cuppens and Demolombe 1988, Demolombe 1991, Gaasterland, Godfrey and
Minker 1992], thus containing a very rich content. In addition, conceptual
queries may also be concerned with user intention or behavior [Gaasterland
1997, Wu, Cercone and Ichikawa 1995].

As for the format of the answers for conceptual answers, we follow the
proposal made by [Imielinski 1987]. In this research, the structure of an
answer is identical to the structure of database itself, with an extensional part
and an intensional part. Such answers have both conceptual and computational
advantages. In the previous example of first time homebuyers, we may answer
this query by retrieving all the actual tuples (which is the extensional answer)
along with a set of characteristics of these people (which is the intensional
answer). In fact, an answer could also be of a mixed format, as discussed in
[Motro 1994]. For example, the query, "Who has high income in Company
SuperInfo?" could be answered by "All the employees assigned to project P2
and Mary." The first part of this answer is intensional while the second part is
extensional. Therefore, just like answers for conventional queries could be
extensional or intensional, answers for conceptual queries may also fall in two
categories: to find actual tuples, or to find descriptive features for the
conceptual information needs the user requested. Some work in cooperative

query answering using multiple layered databases (MLDBs) can be found in
[Han, Fu and Ng 1994, Yoon, Song and Park 1997].

In the remainder of this chapter we examine the relationship between
conceptual query answering and intensional answers using techniques
developed from knowledge discovery in databases. We start with a critical
review on why existing studies do not satisfy conceptual query answering in
data warehouse environments. The issues of our investigation include: to
study the relationship between intensional answers and materialized views in
databases, to study the duality principle between conceptual query answering
and intensional answers under the simple case where conceptual queries can
be answered by intensional answers alone (using one or more intensional
answers), and to investigate two practical approaches to deal with cases when
some intensional answers are not available for answering conceptual queries.
The first approach involves the use of a query-invoked process to produce
necessary intensional answers to answer the conceptual query, thus combining
both lazy and eager strategies. The second approach requires rewriting of the
original conceptual query submitted by the user. Furthermore, as an
application of conceptual query answering using intensional answers, we
sketch the basic idea of constructing recommender systems using a data
warehousing approach.

9.3.4 DUALITY BETWEEN CONCEPTUAL QUERIES AND
INTENSIONAL ANSWERS

9.3.4.1 The duality principle
In this section, we consider conceptual queries through their connection

with intensional answers under the simple case where conceptual queries are
constructed in such a manner so that they can be answered by their
corresponding intensional answers.

We assume intensional answers are expressed in English or Datalog-like
rules. The conceptual queries are usually stated in English while its answers
are expressed in Datalog-like rules. For example, suppose we have the
following intensional answer for a query in a student database, which states
that an excellent student is a young TA (note that "excellent" is not an
attribute or a data value in the database; rather, it is in a concept hierarchy):

 excellent(s) :- (s ∈ Student), (c ∈ Course), (c.TA = s.Sname),

(s.age = young).
(Remember a comma stands for "and.")

This inten sio nal ans wer allow s u s to hand le th e f ollo w in g co n ceptu al q uer y:
Who are the excellent students? This conceptual query can be answered by
either (a) providing features of excellent students as stated in the body of the
above rule, or (b) displaying tuples of the students which are TAs.

As illustrated in the above example, we are mainly interested in conceptual
queries (CQs), but an important relationship between conceptual queries and
intensional answers (IA) should be studied first. The duality between these

two kinds of information activities can be informally stated as two properties,
as shown below.
Property 1 of CQ-IA Duality:

(i) A conceptual query C can be answered if there is an intensional
answer in the form of a rule "C :- body" (here both C and body
indicate valid form of left-hand side and right-hand side of a rule).
(ii) If "head :- body" is an intensional answer for a conventional
query, then the head can be used as a conceptual query.

Recall that from the same extensional answer, several different intensional
answers can be formed. Similarly we may have the following property.
 Property 2 of CQ-IA Duality:

If a conceptual query C can be expressed in the form of the form C
:- C1, C2,..., Cn (where each Ci is a conceptual sub-query), then
each Ci can be connected to an IA in a manner of (i) or (ii) as stated
in Property 1 of CQ-IA duality.

9.3.4.2 Constructing conceptual queries from intensional answers
A straightforward use of the Duality principle is that from each intensional

answer we can identify a variety of potential conceptual queries it can answer.
For example, consider the intensional answer:

valued-customer(X) :- rich(X), willing-to-buy(X).
The following are some conceptual queries that can be answered from this

intensional answer:
(a) What are the characteristics of valued customers? (Answer: rich
and willing to buy.)
(b) What if a customer is rich? (Answer: She would be a valued
customer if she is willing to buy.)
(c) What if a customer is willing to buy? (Answer: She would be a
valued customer if she is rich.)

Note that the issue of distinguishing sufficient and necessary conditions is
omitted here due to space limitation. (We may also consider Quasi-answer and
meta patterns.)

9.3.4.3 Query-invoked generation of intensional answers
For cases where some intensional answers are not available to answer a

conceptual query, we propose two alternatives. In this section, we discuss how
to use a query-invoked process to produce necessary intensional answers to
answer the conceptual query. In the next section, we discuss a more general
method which involves query rewriting.

Using the duality we can identify that at least four different approaches
exist. Note that except for approach A, all the other approaches require query-
invoked generation of intensional answers. Also note that these approaches
described above subsume some approaches reviewed earlier.

Approach A: Apply data mining techniques to obtain intensional answers.
Intensional answers obtained earlier will be used later to generate answers for
conceptual queries. In this case, the extensional part attached with an

intensional answer plays the role of a materialized view. Discussions provided
in the previous section can be applied here.

Approach B: CQ serves as a trigger to activate an IA process. This
approach assumes no preprocessing; instead, CQ activates a process so that
intensional answers will be generated and then compared with the CQ. This
approach may be interesting in theoretical perspectives (particularly those
associated with CQ-IA duality), but it is also difficult to implement for several
obvious reasons; for example, in order to activate an intensional answer, a
conventional query should be generated, and this query should be as "close" to
the conceptual query as possible. A kind of measure (or any criterion) needs to
be established to determine this closeness.

App ro ach C: G en er ating a n swer s o n th e fly. This ap p ro ach als o ass um es no
preprocessing; CQ will trigger a process to construct an answer on the fly.
This may need the help of some pre-existing mechanism, for example, using
the concept hierarchy. If the corresponding IA is to use generalization, then
this process uses specialization. It may even spawn to subqueries of the
original conceptual queries if necessary. Note that Approach C is similar to
Approach B, but answers obtained in these two approaches may not be
identical.

Approach D: Bi-directional search. Note that the CQ-IA duality implies
that to process CQ and to find an IA can be considered as two opposite
directions. Approach D utilizes this fact by combining approaches A and B or
A and C, so that some "middle" ground can be found from two different
directions.

In summary, these approaches combine both lazy and eager approaches for
answering conceptual queries.

9.4 AN APPROACH FOR INTENSIONAL CONCEPTUAL
QUERY ANSWERING

9.4.1 INTRODUCTION

The connections between conceptual queries and intensional answers in
database management systems: Both of these concepts are closely related to
knowledge discovery in databases (KDD) and data mining [Piatetsky-Shapiro
and Frawley 1991, Fayyad, Smyth and Uthurusamy 1996], which are
concerned with the overall process and specific techniques of the nontrivial
extraction of implicit, previously unknown, and potentially useful information
from data.

On the one hand, an intensional answer to a query is a set of
characterizations of the set of database values that satisfy the query (the actual
data retrieved are referred to as the extensional answer.) Intensional answers
are derived from the extensional information in the database [Motro 1994,
Han, Cercone and Fu 1996]. For example, for the query of finding excellent
students, an intensional answer could be some common features (such as good

GPA) shared by these students, rather than the names of these students. On the
other hand, the task of conceptual (or intelligent , or cooperative) query
answering is to map users' conceptual queries to actual database queries and to
produce answers for the users' queries [Imilienski 1987].

S tu dies in inten sio nal an sw er s and co ncep tual q uery an sw er ing h av e lar g ely
been done by researchers in different camps. Traditionally, conceptual query
answering handles conceptual queries by providing extensional data, while
intensional answers handle conventional queries by providing abstract data.
Although some authors started investigating their connections, a general
methodology that deals with how to provide intensional answers for
conceptual answers has yet to be developed. For example, based on an
attribute-oriented data mining technique, an outline of cooperative query
answering using multiple layered databases (MLDBs) was proposed in [Han,
Fu and Ng 1994].

Intensional answers for conceptual queries are particularly important for
processing users' ad hoc decision support queries for On-Line Analytical
Processing (OLAP) in data warehousing environments (see Chapter 5 and
Chapter 11). Relaxation can be used to automatically identify new queries that
are related to the user's original query [Gaasterland 1997]. A related but more
radical concept is query-free information retrieval [Hart and Graham 1997].

In the following we focus on the cases where conceptual queries can be
answered by intensional answers or can be answered through a query-invoked
knowledge-reorganization process. The query-invoked process to produce
necessary intensional answers for a conceptual query can be carried out in
several different ways, including application of data mining techniques to
obtain intensional answers so that they can be used later (an eager approach),
or to have conceptual queries serve as a trigger to activate an intensional
answer generation process (a lazy approach). We present an outline of a
methodology which provides intensional answers for conceptual queries using
attribute-oriented data mining techniques. In order to incorporate the eager
approach, an abstract database should be constructed to handle frequently
submitted queries. The process of generating intensional answers for
conceptual queries are then outlined. The actual steps of generating
intensional answers for conceptual queries are then discussed.

9.4.2 CONSTRUCTING AN ABSTRACT DATABASE FOR
INTENSIONAL ANSWERS

The construction of an abstract database can be summarized as follows.
1. In frequently used relations, keep only those frequently referenced
attributes.
2. Based on the given concept hierarchies and statistical information,
generalize the values of the retained attributes level by level, from the
most specific layer to the most general layer.
3. Merge identical tuples in each generalized relation and update the
count or vote of the generalized tuples. (The purpose of using vote or

count is to control the quality of generalization using a predefined
threshold.)
4. Based on the given information of query access patterns, some
relations may be joined together to form a new relation. The join
operation should be performed on primitive relation to avoid key
removal. After the join operation, perform steps 1, 2, and 3.
5. Keep the record for every new schema for generalized relations,
and also keep the record of different concept levels for every attribute
in each relation.

As an example, let us consider a database consisting of information of
house-buyers, along with the furniture purchased. Figure 9.1 depicts a concept
hierarchy for family-income in relation House-buyer. Figure 9.2 depicts a
concept hierarchy for household-appliances in relation Family-purchase.
Table 9.1 is a portion of the generalized relation of House-buyer after the
conceptual hierarchies are applied. Table 9.2 is a portion of the generalized
relation after House-buyer and Family-purchase are joined [Lu and Chen
1998].

Figure 9.1 Income hierarchy

Figure 9.2 Appliances hierarchy

Table 9.1 House relation (Part)
Age family-

income
house-price house-type vote

young high expensive two-story 12
middle middle-

high
mid-expensive two-story 54

young middle medium tri-level 88
young low medium tri-level 40
old low low ranch
young mid-high expensive two-story 33

Any (family-income)

 Low Middle Mid-high High

[<50000] [50001-75000] [75000-100000] [>100000]

ANY (household-appliances)

Laundry kitchen TV/video Computer-set Clean-tool Outdoor-machine
 | | | | | |
 Washer refrigerator TV Computer vacuum mowing machine
 Dryer microwave VCR printer steam-vac snow-mover

Table 9.2 Family appliance (Part)
Age family-

income
house price furniture f-price household-

appliances
(h.a.)

h.a-
price

Young high Expensive bedroom
living-room
dining-room

5400 TV/video
kitchen
laundry
outdoor-
machine

3400

Middle mid-high mid-
expensive

bedroom
living-room

2200 laundry
outdoor-
machine

1700

Young mid-high medium dining-room
living-room
study-room

3750 computer-set
TV/video

3000

… … … … … …

9.4.3 GENERATING INTENSIONAL ANSWERS FOR CONCEPTUAL
QUERIES

The general process of generating intensional answers for conceptual
queries are sketched below. We assume the existence of related conceptual
hierarchies, as well as a related abstracted database. Conceptual query
answering consists of three steps [Lu and Chen 1998].

 Step 1 . Analyzing query type. Upon receiving a query, we analyze
the conditions involved in the query and decide which type the query
belongs to. In general, we distinguish three types of query: (a) simple
conceptual query (which can be answered directly using the abstract
database), (b) complex conceptual query (which should be mapped to
abstract database), (c) mixed queries (which contains a part which
can be directly answered by the abstract database and another part
which needs to be mapped to the abstract database).

 S te p 2 . A cq u i r in g th e e x t en s io n al a n s w er . F o r co n s id er a ti o n
r e la te d to efficiency, some attributes may be removed first. We then
process the query and acquire the answer.

 Step 3. Producing intensional answers.
The answers acquired in Step 2 may be of a different format. Although the

result of simple queries might already be in the form of an intensional answer
with high level concepts, the result of complex queries will still be in
conventional form (namely, extensional answer). For extensional answers,
further data mining is needed, which can be carried out using the steps such as
removal of irrelevant attributes, with user's help, if necessary; generalization
of each specific value to higher level (one level at a time); and generating an
intensional answer from the generalized result.

 9.4.4 METHOD FOR INTENSIONAL CONCEPTUAL QUERY
ANSWERING

We now provide more detail on generating intensional conceptual query
answers. In general, we can distinguish three cases:

Case 1: Queries can be answered directly by search-only abstract
database. This is an extreme case and demonstrates the typical eager
approach.
Case 2: Queries cannot be answered by the abstract database. This is
another extreme case and demonstrates the typical lazy approach.
Case 3 is the combination of the above two cases, which combines
the eager and lazy approaches.

Since Case 3 is the combination of Case 1 and Case 2, in the following we
use the following example to illustrate Case 3. Consider a database containing
information about the housing market in Omaha. The original relation schema
is

House-sold (original-owner, address, location, house-price, house-
type, floor-area, construction-data, school-area, distance-to-school,
day-of-sale).

In addition, using conceptual hierarchies, a relation with the following schema
is generated and is stored in an abstract database House-for-sale' (in general,
an abstract relation for relation r is denoted as r'):

House-for-sale' (address, location house-price, house-type, floor-area,
construction-date).

Note that although attributes in the abstract database may have the same
name as those in the actual database, the domains of these attributes are
usually different. For example, the values for the floor-area in the actual
database are numerical values in square feet, while the values in the abstract
database are qualitative values such as large, medium, small, and so on.

A user who just relocated in Omaha may want to submit the following
query: "Find a house for sale at west Omaha, which should be located near to
a school, and the price of the house is in the middle range, with middle size
floor area, and the average price of the houses in this residential quarter has
increased mostly in the past three years."

Note that in this query, some needed information (such as distance-to-
school) is in the actual database while some other information (such as
middle-size floor area) will make use of the abstract database. Therefore, to
answer this query, both of the original and the abstract databases should be
accessed. In addition, the conceptual hierarchies used for the construction of
the abstract database may also be needed.

The following are the major steps involved in answering this query.
 (1) Remove non-referenced attributes from relation House-sold.
 (2) Select the tuples with the values of attribute day-for-sale equal to 1995,
1996 and 1997.

 (3) Map the abstract terms "west Omaha," "middle," "near to school" to their
corresponding primitive values and select these tuples satisfying the
conditions in the query.
 (4) Group the tuples by location.
 (5) For tuples in each location, further group them by year.
 (6) Calculate the average sales price of different years for every location.
 (7) Create a new attribute increase-rate for every location and calculate the
increase-rate based on the values of average sales price of different years.
 (8) Select attributes location and increase-rate from the relation House-sold
and join with the generalized relation House-for-sale' in the abstract database
using key location.
 (9) Find the location(s) with middle house price, middle size floor area, near
to school, and with the largest value of increase-rate.

The final answer to the query contains one or few locations.
The above steps illustrate a general methodology for intensional conceptual

query answering.

SUMMARY

In this chapter we examined the issue of conceptual query answering.
Although it is a relatively short chapter, it has a close relationship with other
chapters, particularly with materials to be presented in Chapters 10 and 11.
We will get a chance to review the issue of conceptual query answering in
Chapters 10 and 11.

SELF-EXAMINATION QUESTIONS

1 . In the method presented in Section 9.4, we have assumed that the
conceptual hierarchy is already constructed. Suppose no such hierarchy
exists; how will you construct such a hierarchy which is useful for
conceptual query answering?

2. Based on the description of the abstract database, give an example to
show what the tuples in the abstract database would look like. You may
first construct a few tuples in the original database, and use the
conceptual hierarchy to generate tuples in the abstract database.

3. Using the database schema described in Section 9.4, make two examples
of conceptual queries.

REFERENCES
AAAI 1999, Workshop of Question Answering Systems, AAAI 1999 Fall
Symposium Series.
Barklund, J., Dell'Acqua, P. and Costantini, S., Multiple meta-reasoning
agents for flexible query-answering systems, in 1996 Workshop on Flexible

Query-Answering Systems (FQAS '96), Datalogiske Skrifter, No. 62, 155-
156, 1996.
Cai, Y., Cercone, N. and J. Han, J., Attribute-oriented induction in relational
databases, Chaps. 12 in G. Piatetsky-Shapiro and W. J. Frawley (eds.),
Knowledge Discovery in Databases, AAAI/MIT Press, Menlo Park, CA,
1991.
Cuppens, F. and Demolombe, R., Cooperative answering: a methodology to
provide intelligent access to databases, Proc. 2nd Int'l Conf. Expert Database
Systems, 621-643, 1988.
Demolombe, R., Cooperative access to data and knowledge bases, Proc. 7th
Int'l Conf. VLDB, pp. 387, 1991.
Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R.
(eds.), Advances in Knowledge Discovery and Data Mining, AAAI/MIT
Press, Menlo Park, CA, 1996.
Gaasterland, T., Godfrey, P. and Minker, J., An overview of cooperative
query answering. J. Intel. Info. Sys, 1, 123-157, 1992.
Gaasterland, T., Cooperative answering through controlled query relaxation,
IEEE Expert, 12(5), pp. 48-59, 1997.
Gibbons, P. B. and Matias, Y., New sampling-based statistics for improving
approximate query answers, Proc. SIGMOD '98, 331-341, 1998.
Han, J., Fu, Y. and Ng, R., Cooperative query answering using multiple
layered databases, Proceedings of 2nd International Conference on
Cooperative Info. Sys., 47-58, 1994.
Han, J., Huang, Y., Cercone, N. and Fu, Y., Intelligent query answering by
knowledge discovery techniques, IEEE Transactions on Knowledge and Data
Engineering, 8(3), June 1996, pp. 373-390.
Hart, P. and Graham, J., Query-free information retrieval, IEEE Expert,
12(5), pp. 32-37, 1997.
Imielinski, T., Intelligent query answering in rule based systems, J. Logic
Programming, 4(3), 229-257, 1987.
Lu, P. and Chen, Z., Intensional conceptual query answering through data
mining, Proceedings 4th Joint Conference of Information Sciences, Vol. III,
pp. 479-482, 1998.
Motro, A., Using integrity constraints to provide intensional answers to
relational queries. Proceedings of 15th International Conference on VLDB,
237-246, 1989.
Motro, A., Intensional answers to database queries. IEEE Transactions on
Knowledge and Data Engineering, 6(3), 444-454, 1994.
Piatetsky-Shapiro, G. and Frawley, W. J. (eds.), Knowledge Discovery in
Databases, AAAI/MIT Press, Menlo Park, CA, 1991.
Wu, X., Cercone, N. and Ichikawa, T., A knowledge-based system for
generating informative responses to indirect database queries, Journal of
Intelligent Information Systems, 5, 5-23, 1995.
Yoon, S. C., Song, I. Y. and Park, E. K., Intensional query processing using
data mining approaches, Proceedings CIKM '97 , 201-208, 1997.

Chapter 10

FROM MACHINE LEARNING TO DATA MINING

10.1 OVERVIEW

In this book we stay with a unified approach to discuss data and knowledge
management. We started from what we called exact retrieval, and then moved
to non-exact retrieval. We have seen knowledge retrieval as extended data
retrieval through analogical reasoning. The next thing we want to focus on is
how to max out useful information from retrieval systems. This leads to the
discussion of two closely related issues: machine learning (which was briefly
introduced in Chapter 9) and data mining.

The materials presented in this chapter are important, due to several
reasons. First of all, the notion of machine learning is very useful. As already
briefly explained earlier, machine learning, as a process of search and
knowledge representation, serves as a re-examination of computational
intelligence (Chapter 2), and provides an effective way for automated
knowledge acquisition (Chapter 5). Machine learning is extremely important
for building intelligent agents. When the designer has incomplete knowledge
of the environment that the agent will live in, learning is the only way that the
agent can acquire what it needs to know. Learning thus provides autonomy. It
also provides a good way to build high-performance systems [Russell and
Norvig 1995].

In addition, the topic covered in this chapter reveals an interesting
connection between database management and knowledge-based systems. The
two concepts, data and knowledge, can be connected through the notions of
knowledge discovery in databases (KDD) and data mining. Knowledge
discovery in databases (KDD) and data mining is a typical example of shared
interest of computational intelligence and data/information retrieval. It is also
a typical example of how their methods differ from each other. Computational
intelligence techniques can be used to achieve agent-based data mining.
Finally, we should also notice the interesting connection between uncertainty
reasoning in knowledge-based systems and machine learning, because
uncertain reasoning methods may contribute useful techniques to perform
machine learning. Their relationship can also be examined from another
perspective: machine learning methods intend to find regularity from data, and
thus remove uncertainty from data, or maintain what is certain in the data.

Basic research has been carried out in the field of machine learning for
many years. But in reality it is data mining which us rapidly gaining
popularity, largely due to the ever-increasing information need from profit-
making organizations. Machine learning and data mining share common

concerns in philosophy: making implicit things (such as patterns hidden in the
data) explicit. One frequently mentioned difference between machine learning
and data mining is the problem related to scaling. The study of machine
learning puts emphasis on the development of algorithms based on various
inference mechanisms and usually assumes data are already residing on the
main memory. On the other hand, data mining has been outgrowing from
conventional database queries and is a natural extension of database
management operations. Note that data mining is not just a database brand of
machine learning; it combines work from other fields, including statistic
inference. Because of these reasons, machine learning and data mining are
studied under different disciplines and are seldom covered in the same book.

The unique perspective adopted by this book allows us to take an integrated
approach to discuss both topics in the same chapter. In the following, we start
with a discussion on the basics of machine learning (Sections 10.2-10.5), and
extend our discussion to data mining (Sections 10.6-10.9).

10.2 BASICS OF MACHINE LEARNING

10.2.1 MACHINE LEARNING: DEFINITION AND APPROACHES

To understand what machine learning is, it is important to know what is
learning. According to Herbert Simon, learning refers to any change in a
system that allows it to perform better the second time on repetition of the
same task or on another task drawn from the same population [Simon, 1983].
Therefore, learning is defined in terms of measurement of future performance.
The best model for machine learning is human learning. Evidence from brain
science has been used to establish various approaches for machine learning.
• Symbolic approaches build on the assumptions of knowledge-based

systems. In these approaches, the primary influence on the behavior of the
learning program is its base of explicitly represented domain knowledge.

• Sub-symbolic (artificial neural or connectionist networks) do not
construct an explicit model of the world; rather, they are shaped by it.
Neural networks do not learn by adding representations to their
knowledge base; instead, they learn by modifying their overall structure
in order to adapt to the contingencies of the world they inhabit.

• Other approaches: For example, according to social and emergent models
of learning, learning algorithms patterned after the processes, underlying
evolution: shaping a population of individuals through the survival of its
most fit members. Emergent models of learning simulate nature's most
elegant and powerful form of adaptation.

In order to carry out machine learning, training examples are often needed.
Training examples refer to empirical data used to learn a specific concept. For
example, in order to learn the concept of a "ball," we need to provide various
examples of balls. Based on how training examples are used, machine learning
algorithms can be categorized as either supervised learning (in which a

teacher exists) and unsupervised learning (in which such teachers do not
exist). Also, additional examples may be needed to test (or verify) the
obtained result.

In this book we will only be able to discuss some selected features of
machine learning, particularly those related to data mining.

10.3 INDUCTIVE LEARNING

10.3.1 GENERALIZATION FOR INDUCTION

We use inductive learning process to review the notion of machine learning
as search and representation. Recall that in Chapter 3, we have discussed the
basic notion of inductive reasoning, and pointed out that an important form of
performing inductive reasoning is through generalization. There are several
principles for generalization, such as:
 1. Replacing constants by variables: For example, we can replace

"student(mary)" by "student(X)".
 2. Dropping conditions in conjunctive expressions so that less restriction

will be imposed. For example, we can generalize from
"qualified(X) :- gpa(X,G), G>3, employment-year(X,Y), Y>5"

 to
"qualified(X) :- gpa(X,G), G>3"

where employment history requirement is dropped.
 3. Adding disjunct so that more alternatives will be allowed. For example,

we can generalize
"qualified(X) :- gpa(X,G), G>3"

 by adding another condition, so the rule would look like
"qualified(X) :- gpa(X,G), G>3; employment-year(X,Y), Y>5."

Note that here semicolon denotes "or."
 4. Replacing a property by its parent in the class hierarchy. For example,

consider a rule which says the qualification requires a graduate degree. If
this requirement is replaced by a college degree, then the requirement is
relaxed (namely, generalized).

We should be cautious about the problem of overgeneralization, due to the
unsoundness of induction. For example, we may attempt to induce that any
new car is fast. However, a new toy car is not fast. To avoid
overgeneralization, we can simply perform generalization as little as possible
(examples of hierarchies in Chapter 9 can provide some insight about this
issue). A recent discussion on generalization and generalizability measures is
provided by [Wah 1999].

10.3.2 CANDIDATE ELIMINATION ALGORITHM

We now introduce the basic idea of the well-known candidate elimination
algorithm to illustrate the approach of version space search. Here the term

candidate refers to candidate concepts, namely, the set of all concept
descriptions consistent with the training examples. The algorithm maintains
two sets, G and S. G contains maximally general candidates, it stands for the
upper bound found so far; while S stands for maximally specific candidates,
standing for lower bound found so far. Initially, G contains whole space or all
candidate concepts while S is empty. During the execution of the algorithm, G
shrinks to exclude negative instances (considering negative examples which
were not aware in the past), while S expands to include new positive instances
(considering positive examples which were not aware in the past). Any
concept that is more general than some concept in G will cover negative
instances, while any concept that is more specific than some concept in S will
fail to cover some G positive instances. The algorithm terminates when S = G.
This general process is illustrated in Figure 10.1.

? -- potential target concepts; +: positive examples
Figure 10.1 G and S in Candidate elimination algorithm

10.3.3 ID3 ALGORITHM AND C4.5

As an introduction of a complete machine learning algorithm, let us take a
look at ID3. It employs a process of constructing a decision tree in a top-down
fashion. A decision tree is a hierarchical representation that can be used to
determine the classification of an object by testing its values for certain
properties. In a decision tree, a leaf node denotes a decision (or classification)
while a non-leaf node denotes a property used for decision (such as color, size,
etc.). We prefer the shortest path to reach a leaf, because it implies the fewest
possible number of questions are needed. Note also that the role of examples
is used to guide the construction of a decision tree.

The main algorithm is a recursive process. At each stage of this process, we
select a property based on the information gain calculated from the training
examples. The skeleton of the ID3 algorithm is shown below (following the
presentation of [Luger and Stubblefield 1998]. A brief discussion on
calculating the information gain will follow.

 G

 ?
? ?
 S
 ?

?

+
 +

+

Algorithm ID3
Input: a set of examples
Output: a decision tree
Method:

 ID3_tree (examples, properties)
 if all entries in examples are in the same category of decision
variable
 return a leaf node labeled with that category
 else
 calculate information gain;
 select a property P with highest information gain;
 root of the current tree = P;
 properties = properties - P;
 for each value V of P
 create a branch of the tree labeled with V;
 examples_V = subset of examples with values V for property P;
 append ID3_tree (examples_V, properties) to branch V

The information gain is calculated based on the notion of information
entropy; roughly speaking, it involves a formula of the form Σk log k where k
is the number of training examples pertaining to a particular property (such as
color) or a particular value of the property (such as red).

To illustrate the ID3 algorithm, we consider the following set of training
example. Our goal is to learn the concept of high or low profit.

Table 10.1 Training examples
ID Color (C) Size(S) Made in M) On sale (O) Profit?
1
2
3
4
5
6
7
8

Black (Bl)
Brown (Br)
Brown (Br)
Gray (G)
Black (Bl)
Gray (G)
Black (Bl)
White (W)

M
L
M
L
S
M
S
M

US
US
US
US
Foreign
Foreign
US
US

Y
N
Y
Y
Y
Y
N
N

Low
High
Low
High
High
High
Low
High

To illustrate how ID3 algorithm proceeds, we make use of a table format to
show the steps of the ID3 algorithm. First, we calculate the entropy in regard
to all the possible outcomes (regardless properties): how or low profit. We
have the following simple calculation:

H = -3/8 * log 3/8 - 5/8 * log 5/8 = 0.955.
After the first three columns, there are 11 columns in the table for

processing (note that if the classification variable has more than two
outcomes, more columns are needed):

 (1):cik: Total number of training examples with value k of the current
property with the first classification outcome (i.e., profit is high);
 (2) djk: Total number of training examples with value k of the current
property with the second classification outcome (i.e., profit is low);
(3):cjk + djk = (1)+(2)
(4): fik = (1)/(3)
(5): gik = (2)/(3)
(6): log fik = log(4)
(7):log gik = log(5)
(8): Hjk = -(4)*(6) - (5)*(7)
(9): pjk = (3)/n
(10)Hp = E(Hj) = Σ1

n (8) × (9) (Note that there is one Hp value per
property. The result is recorded in the first row of the property).
(11): Gp = H - Hp = H - (10) (Note that there is one Gp value per
property. The result is recorded in the first row of the property. Note
also that H need to be calculated only once).

The process of computing can be captured using a table format, as
illustrated in Table 10.2.

Table 10.2 Calculation of information gains
P k v (1)

cik

(2)
djk

(3) (4)
fjk

(5)
 gjk

(6)
log
 fjk

(7)
log
gjk

(8)
Hjk

(9)
pjk

(10)
Hp

(11)
Gp

C 1 W 0 1 1 0 .5 -1 -1 0 .13 .59 .36
2 Bl 2 1 3 .67 .33 -.59 -1.6 .92 .38
3 Br 1 1 2 .5 .5 -1 -1 1 .25
4 G 0 2 2 0 1 -- -- 0 .25

S 1 M 2 2 4 .5 .5 -1 -1 1 .5 .75 .2
2 S 1 1 2 .5 .5 -1 -1 1 .25
3 L 0 2 2 0 1 -- -- 0 .25

M 1 U 3 3 6 .5 .5 -1 -1 1 .75 .75 .2
2 F 0 2 2 0 1 -- -- 0 .25

O 1 Y 3 2 5 .6 .4 -.74 -1.3 .97 .63 .60 .35
2 0 3 3 0 1 -- 1 0 .37

Based on the calculation, property color with the largest information gain, is
selected. The first level of ID3 tree is shown in Figure 10.2(a), with color as
the root, and values of color as leafs. Identifiers of examples are attached with
the leaf nodes.

color

Black
[1, 5, 7]

White
[8]

Gray
[4,6]

Brown
[2,3]

Figure 10.2(a) Top-level ID3 tree

The recursive process continue for a leaf with training examples with
mixed results of profits. At the nodes of "black," we have 3 properties to
choose: Size, Made-in and On-sale. The training set involved here contains
only three elements, namely instances with ID 1, 5, and 7. Suppose the
property "Made-in" was chosen after the information gain is calculated (please
verify it). A subtree with root "made-in" is then constructed, as shown in
Figure 10.2(b). Since both instances 1 and 7 are made in US and both have
low profit, we have reached the leaf nodes, and no more subtrees should be
further considered. At the node "white," there is only one instance 8, so it is a
leaf node, and no subtree construction is needed. Same is the case of node
"Gray," where both instances 4 and 6 are in the same classification of profit
"high." Finally, at the node "brown," the two instances 2 and 3 have different
profit classifications, so a recursive process of subtree construction should be
carried out. Suppose the property "Size" is chosen (please verify), the subtree
can be constructed as shown in Figure 10.2(b). Since size M and L can
distinguish the profit, we have reached leaf nodes, and no further construction
is needed.

color

Black
[1,5,7]
(mixed)

Made-in

US Foreign
[1,7] [5]
Low High

White
[8]

High

Gray
[4,6]
High

Brown
[2,3]

(mixed)

Size

M L
[3] [2]

Low High
Figure 10.2(b) ID3 tree constructed

The table format shown above clearly indicates the step by step process of
ID3 algorithm. Note that there are only two classifications (profit high or low)
are involved in the classification. However, the table format calculation can be
generalized to the case where more than two classifications exist. In this case,
more columns are needed.

ID3 has been proven a very useful method, yet there are many restrictions
which make this algorithm not applicable in many real world situations. For
example, the data could be bad (when two or more identical attribute sets give
different results), missing data, showing a continuous variable, as well as

others. C4.5 was developed to deal with these problems, and can be
considered as an enhancement of ID3. Issues considered include bad or
missing data, continuous variables, as well as large data size. Specific
techniques have been introduced to deal with these issues. For example,
bagging produces replicate training sets by sampling with replacement from
the training instances, and boosting uses all instances at each replication, but
maintains a weight for each instance in the training set [Quinlan 1993, 1996].

10.4 EFFICIENCY AND EFFECTIVENESS OF
INDUCTIVE LEARNING

10.4.1 INDUCTIVE BIAS

Generalization provides a useful approach for induction, and empirical data
can be used to guide generalization, as shown in ID3 as well as many other
algorithms. In order to make induction successful and to improve efficiency,
however, it is desirable for the user to provide some hint to guide the learning
process. Prior knowledge and assumptions about the nature of the concepts
being learned are important to successful learning. One way to incorporate
prior knowledge is by providing inductive bias, which refers to any criterion
(usually heuristics) a learner uses to constrain the concept space or to select
concepts within that space (namely, to prune the search structure). For
example, ID3 performs a hill-climbing search through the space of possible
decision trees. The calculation of information gain represents a greedy
approach: At each stage of the search, ID3 algorithm examines all the tests
that could be used to extend the tree and chooses the test that gains the most
information to reach a decision. In addition, inductive bias can also take
advantage of domain-specific knowledge (even though many learning
algorithms are not restricted to any specific domains).

10.4.2 THEORY OF LEARNABILITY

10.4.2.1 Why theory of learning is important
The goal of inductive bias is to restrict the set of target concepts in a way so

that we may perform search efficiently and find concept definitions with high
quality. This consideration leads to a discussion of quantifying the
effectiveness of an inductive bias. The theory of learnability has been
established for this purpose. Briefly, learnability is a property of concept
spaces and is determined by the language required to represent concepts. The
theory of learnability is important because it is concerned with two aspects
which are both crucial for the success of learning:

• quality of concepts learned; and
• the size of the sample set.

10.4.2.2 PAC learning
Learnability can be measured in terms of probability as discussed in

probability theory. Probability theory is concerned with how to handle
randomness. (A brief discussion on probability theory will be provided in
Chapter 12.) A class of concepts is considered as learnable if an algorithm
exists that executes efficiently and has a high probability of finding an
approximately correct concept. (Note that this definition does not guarantee
the correctness of learning.) The theory based on this definition is referred to
as PAC learning (i.e., Probably Approximately Correct learning). [Viliant
1984] provided the following definitions for this theory:
• A learned rule r will be called approximately correct with accuracy ε if

and only if P(error) ≤ε, where P is the probability function and 0 < ε < 1.
• A learning procedure L is probably approximately correct (PAC) with

confidence δ if, given a sequence of randomly selected training examples,
the probability that L learns a rule that is not approximately correct is at
most δ (0 < σ < 1). In other words, we require P[P(error) > ε] < δ, here P
is the probability function.

The notion of learnabiblity is important for inductive learning. However, a
more detailed discussion on PAC learning is out of the scope of our
discussion.

10.5 OTHER MACHINE LEARNING APPROACHES
We now take a brief look at some other machine learning techniques. Our

purpose is to demonstrate the variety of the techniques available, rather than
the detail of these techniques. It is important to understand the unique features
of each approach, which is important for an integrated use of various
techniques for decision making.

10.5.1 MACHINE LEARNING IN NEURAL NETWORKS

10.5.1.1 Review of neural networks
As briefly described in Chapter 2, the basic feature of neural networks is

that they de-emphasize the use of symbols to denote objects and relations;
intelligence is viewed as arising from the collective behavior of large numbers
of simple, interacting components. The terms subsymbolism and
connectionism are used to describe this basic feature. The nodes and weights
in a neural network demonstrate a distributed knowledge representation. The
architecture of neural networks make themselves suitable for machine
learning. In fact, in a neural network, learning is carried out by adjusting
weights.

Neural networks have been very useful for many applications. A rich
literature exists. For example, using neural networks for business problems
solving was discussed in [Bigus 1996]. In this book we will not provide a
detailed discussion on neural networks. Instead, we will only summarize some
important results which indicate the uniqueness of this approach.

10.5.1.2 Supervised learning
We start with supervised learning where a "teacher" (namely, the "correct"

answer) exists in the training session. A type of single-layer network called a
perceptron was proposed in late 1950s. A generalization of the perceptron
learning algorithm called the delta rule is used in many neural network
architectures. The delta rule is a mathematical formula to handle error used for
training. (Note errors can be measured because of the existence of the
teacher.) Intuitively, this delta rule is based on the idea of an error surface,
which represents cumulative error over a data set as a function of network
weights. Given a weight configuration, the learning algorithm should be able
to find the direction on this surface which most rapidly reduces the error.

Multi-layered perceptrons (MLPs) were then proposed to overcome the
limitations of single-layer perceptrons. A multilayer perceptron (MLP)
consists of an input layer, at least one intermediate or hidden layer, and one
ouptut layer. The neurons from each layer are usually fully connected to the
neurons from the next layer. The MLPs were put into practice only when
learning algorithms were developed for them, one of them being the error-
propagation algorithm called backpropagation. Error propagation starts at the
output layer and an error is propagated backwards through the hidden layers.
Backpropagation uses generalized delta rule for training.

Regardless of the training algorithm used for an MLP, there are some
common features of MLP architectures, including the following:
• MLPs are universal approximators (theorem): An MLP with one hidden

function layer can approximate any continuous function to any desired
accuracy, subject to a sufficient number of hidden nodes. Multilayered
networks are computationally complete, namely, they are equivalent to
the class of Turing machines. Note, however, this theorem only shows
such an MLP exists without telling how to construct it.

• MLPs are multivariate non-linear regression models.
• MLPs can learn conditional probabilities.
 More detailed discussion on MLP can be found in [Kasabov 1996].

10.5.1.3 Unsupervised learning
We now further consider learning in neural networks without a teacher. In

this case, we cannot rely on the error rate, because we cannot measure it. In
unsupervised learning, a critic is not available, and the weight are modified
solely as a function of the input and output values of the neuron. Unsupervised
learning is considered to be psychologically plausible, because humans tend to
learn more about nature and life through their own experience, rather than by
following the correction of a teacher. Hebbian learning (or Hebb's theory of
learning) can be used as an example of unsupervised learning, although
Hebbian learning can also be supervised. Hebb's theory is based on the
observation that in biological systems when one neuron contributes to the
firing of another neuron, the connection or pathway between the two neurons
is strengthened. This theory is appealing because it establishes behavior-based
reward concepts at the neuron level. In unsupervised Hebbian learning, the

training of the network has the effect of strengthening the network's responses
to patterns that it has already seen. Hebbian techniques can be used to model
conditioned response learning, where an arbitrarily selected stimulus can be
used as a condition for a desired response.

An important theory for unsupervised learning is Adaptive resonance theory
(ART). It makes use of two terms used in the study of brain behavior: stability
and plasticity. The stability/plasticity dilemma is the ability of a system to
preserve the balance between retaining previously learned patterns and
learning new patterns. The key element in Grossberg's realization of this
dilemma is the control of the partial match between new feature vectors and
ones already learned. Two layers of neurons are used in the architecture: a top
layer (an output, concept layer) and a bottom layer (an input, feature layer).
Two sets of weights between the neurons in the two layers are used. The top-
down weights represent learned patters or expectations. The bottom-up
weights represent a scheme for new inputs to be accommodated in the
network.

10.5.2 EVOLUTIONARY ALGORITHMS FOR MACHINE LEARNING

10.5.2.1 Basics of evolutionary algorithms
We now turn to another kind of learning algorithms which represent social

and emergent models of learning [Luger and Stubblefield 1998]. Evolutionary
algorithms refer to learning algorithms patterned after the processes
underlying evolution: shaping a population of individuals through the survival
of its most fit members. The power of selection across a population of varying
individuals has been demonstrated in the emergence of species in natural
evolution, as well as through the social processes underlying cultural change.
Since the evolutionary process learns an agent function based on occasional
rewards as supplied by the selection function, it can be seen as a form of
reinforcement learning. However, there is no attempt to learn the relationship
between the rewards and the actions taken by the agent or the states of the
environment. A genetic algorithm searches directly in the space of individuals,
with the goal of finding one that maximizes the fitness function. The search is
carried out in parallel, because each individual in the population can be seen
as a separate search. The search also employs the idea of hill climbing
(Chapter 2), because we are making small genetic changes to the individuals
and using the best resulting offspring [Russell and Norvig 1995].

10.5.2.2 Genetic algorithms
As an example of evolutionary algorihtms, let us take a look at genetic

algorithms [Mitchell 1998; Luger and Stubblefield 1998; Pakath 1996]. A
genetic algorithm (GA) is one that seeks to improve upon the quality of a
problem solution through a process that mimics that of natural selection and
adaptation of species in nature. The method begins with a set of initial
solutions (called an initial population) to a complex problem. It then crosses
and mutates selected solutions from this initial set to develop a new set of

solutions. The procedure is repeated to create successive generations of
solutions until a predefined stopping criterion is met. This criterion may be
based on a threshold value for error expended, solution quality, or a
combination.

The philosophy behind the method is that if we conduct a search for a better
answer simultaneously from multiple locations within a complex space of
solutions, we stand a better chance of locating the globally optimal solution.
Consequently, the GA approach has generally been advocated for complex,
multi-modal solution space where there is high likelihood of a search strategy
being trapped at a local optima. The probability of entrapment is generally
higher for methods that localize their search efforts to a specific region of the
solution space.

The initial set of solutions is either entirely randomly chosen or determined
through a deliberate strategy that involves both deterministic and random
choice. The former approach is used when the decision maker has no
particular reason for wanting to choose a starting set otherwise and is
generally how a GA operates. In certain instances, however, it is worthwhile
to seed the starting solution set with some carefully chosen set of initial
solutions along with some randomly generated solutions, usually because the
population of solutions is of fixed, limited size.

A problem that must be dealt with is that when the space is very large in
relation to population size, it is likely that a random starting solution set may
not be a representative of the entire space. The method prefers that the set be
as diversified as possible to enable it to search for improved solutions from
multiple, well-dispersed points in the space. Another reason is that the random
starting population may be made up entirely of very poor quality solutions.
This situation increases the likelihood of being trapped at a local optima.
Another problem is that while it may at times be possible to wade through
such solutions and ultimately locate the globally best answer, the effort
required may be highly prohibitive. Deliberately seeding the starting
population with some high-quality solutions may help accelerate the move
toward the desired solution.

Given a starting population, a GA would start its processing by selecting a
set of members from this set to populate a gene pool. New solutions are
generated using members picked randomly from the gene pool. The general
strategy is to associate selection probabilities with individual members of the
current population that reflect the standing or strength (called the fitness) of
each member in relation to other members in the set. Usually, we convert the
quality measure of each solution in the population into a selection probability
measure for that member by converting the fitness to relative fitness.
Solutions of higher quality (i.e., highly fit solutions) have higher likelihood of
being selected to participate in the gene pool.

Once the gene pool is determined, a GA begins the next phase of its
operations by using members of the gene pool for procreation. That is,
members from the pool are randomly selected to act as parents. Parents are
either mutated or crossed with one another to generate new solutions. These

new solutions replace existing solutions in the population. The general
procedure is as follows. Associated with any GA is a set of genetic operators
called mutation, crossover, and reproduction. Each of these has a
predetermined probability of application. The GA selects two members at
random from the gene pool.

Based on the crossover probability, it is first determined whether the two
parents must be crossed. If the answer is yes, they are crossed with one
another, yielding either one or two offspring solutions, depending on the type
of crossover being applied. At this stage one is left with either the original
parents (if the decision was not to cross them) or the offspring generated via
crossover. A determination is then made on whether each of the currently
available solutions should be mutated, based on the mutation probability.
 The key idea of a generic algorithm is now summarized below.

Algorithm genetic
Input: a goal, a set of operators, an evaluation criterion;
Output: an offspring equal to the goal
Method:

 round t = 0;
 initialize the population P(t);
 while the termination condition is not met do
 {evaluate the fitness of each member in P(t);
 if no member in P(t) is better than the previous round
 use mutation to change one member;
 select the most fit members from P(t) as parents for next round;
 use crossover to produce the offspring of these pairs;
 t = t+1;}

As an example of learning using genetic algorithm, let us consider how to
solve the "mastermind" game. In this game one of two players thinks up a
number and the other has to find it out with a minimal number of questions
(following [Kasabov 1996]). There are two players, the first player has the key
of a number to be guessed by the second player. At the beginning, the second
player is asked to provide four answers (a 6-digit string of 0 and 1s), and each
answer is evaluated based on its fitness. The best two answers are used to
produce the offspring using crossover. Crossover can be done by dividing
each parent string in a flexible manner (such as a 3-3 split, 1-5 split, and so
on). This process continues until the correct answer is reached. In case this
process does not converge, mutation can be used to alter certain characters.
An example of applying genetic algorithm to the game "guess the number" is
shown in Table 10.2. In this game, the first player picks a number (in binary
form) and the second player is asked to guess what it is. Each time the second
player is allowed to give four answers and these answers are evaluated by the
first player according to their closeness to the guessed number. The top two

answers will be used as the parents to produce offspring. In general, crossover
will be used; however, in a case (which is rare) that such produced offspring
does not have a better evaluation score, mutation may be used. The first player
could be the computer. Table 10.2 shows the answers provided by the second
player as well as their evaluations in each round of play. Suppose the number
to be guessed is 110101. The first round of play is shown in Table 10.3(a) (no
crossover is involved in this round).

 Table 10.3(a) The initial answers
Candidate

name
Candidate

string
Evaluation

Score
A
B
C
D

000010
101010
010011
100100

1
1
3
4

Using the criterion of 110101, the best ones are chosen, namely, C and D.
The next step of play is shown in Table 10.3(b). The exact manner of
crossover is described in comments column.

Table 10.3(b) The first round of play
Parent
name

Parent
string

Offspring
name

Offspring
generated

Evaluation
score

Comments

C
D

01:0011
10:0100

E
F

01:0100
10:0011

4*
3

Divide a string with 2 to
4 characters

C
D

0100:11
1001:00

G
H

0100:00
1001:11

3
4*

Divide a string with 4 to
2 characters

Selecting E and H, the next round of play is shown in Table 10.3(c).

Table 10.3(c) The second round of play
Parent
name

Parent
string

Offspring
name

Offspring
generated

Evaluation
score

Comments

E
H

0:10100
1:00111

I
J

0:00111
1:10100

3
5*

Divide a string with 1 to
5 characters

E
H

010:100
100:111

K
L

010:111
100:100

4*
4(dropped))

Divide a string with 3 to
3 characters

Selecting J and K, the fourth round of play is shown in Table 10.3(d). The
game ends at this round because offspring N produces the right answer.

Table 10.3(d) The final round of play
Parent
name

Parent
string

Offspring
name

Offspring
generated

Evaluation
score

Comments

J
K

1101:00
0101:11

L
M

1101:11
0101:00

4
5

Divide a string with 4 to
2 characters

J
K

11010:0
01010:1

N
O

11010:1
01010:0

6*
4

Divide a string with 5 to
1 characters

Let us summarize the different roles of the three classes of operators.
• Reproduction seeks to preserve what is good in the current generation in

subsequent generations.

• Crossover seeks to mingle the attributes of two solutions to create a new
solution that could possess the more desirable traits of each parent.

• Mutation seeks to inject some novelty into the population by attempting
to generate offspring quite unlike any in existence. Its role is
rejuvenation. Mutation is especially useful in jolting the process out of
extrapment at a local optima.

Generally, crossover is most popular, with mutation being used only when
crossover fails to bring about any improvement. Too high a mutation
probability would reduce the process to a random walk. In the above example,
mutation is not used at all. However, if no answer produced in the second
round is better than those produced in the previous round, mutation may take
over; for example, mutate 010100 to 010101 by changing one bit of one
offspring.

10.5.3 SUMMARY OF MACHINE LEARNING METHODS

We have provided a brief sketch of several representative machine learning
methods. There are still many other methods not mentioned at above. For
example, within the symbolic camp, machine learning can be carried out
through learning by analogy (in which a new concept is learned by mapping
from an old one), learning by examples (in which learning is carried out as a
careful theoretical analysis of a given example), as well as many other more
advanced techniques.

10.6 FEATURES OF DATA MINING
Having discussed some important features of several important machine

learning techniques, we are now ready to turn to data mining. In the last
chapter, we have already illustrated what is knowledge discovery in databases
(KDD) and data mining. In this section, we discuss some important features of
data mining (including its relationship with data mining). Several data mining
techniques will then be examined in the rest of this chapter.

10.6.1 THE POPULARITY OF DATA MINING

The ever-increasing popularity of data mining is due to demands from
various real-world applications in decision making. The following are some
typical cases:
• Business data mining: Ad hoc techniques are no longer adequate for

sifting through vast collections of data. They are giving way to data
mining and knowledge discovery for turning corporate data into
competitive business advantage.

• Scientifc data mining: Digesting millions of data points, each with tens or
hundreds of measurements can be turned over to data mining techniques
for data reduction, which functions as an interface between the scientist
and large data sets. KDD applications in science may generally be easier

than applications in business or finance, mainly because science users
typically know their data in intimate detail.

• Internet and data mining: Some have advocated transforming the Web
into a massive layered database to facilitate data mining, but the Web is
so dynamic and chaotic to be tamed in this manner. As an alternative, a
proposal has been made which is based on the structured Web hypothesis:
information on the Web is sufficiently structured to facilitate effective
Web mining [Etzioni 1996].

As an example, let us consider mutual funds which are a popular investment
tool. It has been noted that among mutual fund winners, history seems to
repeat itself. In a classic study of 728 stock funds done a few years ago, Yale
professors Roger Ibbotson and William Goetzmann discovered that "funds
ranked in the top one-fourth in 3-year performance had a 72 percent chance of
making the top half over the next 3 years." And Morningstar Research also
found that "almost half of the diversified stock funds it awarded 5-stars a
decade ago still merited 4 or 5-stars in 1997. Only 20 percent fell to just one
or two stars." (Paul B. Farrell, CBS MarketWatch: "Rule no. 9: Past
performance counts," May 20, 1999).

As another example, if you access on-line book seller Amazon.com's web
page, if you have searched for Data Mining Techniques: For M a r k e t i n g ,
Sales, and Customer Support by Michael J. A. Berry, Gordon Linoff, you will
also see the message:

Customers who bought this book also bought: Predictive Data
Mining: A Practical Guide by Sholom M. Weiss, Nitin Indurkhya
(Contributor), etc.

This message reveals book-buyers' activities, and illustrates a primitive form
of data mining

In this book, we will focus on computational intelligence methods that may
contribute to database-centric approaches for data mining.

10.6.2 KDD VERSUS DATA MINING

As mentioned in Chapter 9, knowledge discovery from databases (KDD)
has caught great attention to many researchers and practitioners from various
fields. According to [Piatetsky-Shapiro and Frawley, 1991], knowledge
discovery is the nontrivial extraction of implicit, previously unknown, and
potentially useful information from data. Knowledge discovery differs from
machine learning in that the task is more general and is concerned with issues
specific to databases.

The term KDD was coined in 1989 to refer to the broad process of finding
knowledge in data. It has been mostly used by computational intelligence and
machine learning researchers. For several years, this term was used
interchangeably with another term: data mining, which has been commonly
used by statisticians, data analysts and the MIS community. Recently, a kind
of consensus has been made. The term KDD is now viewed as the overall
process of discovering useful knowledge from data, while data mining is

viewed as the application of some particular algorithms for extracting patterns
from data without the additional steps of the KDD process. These additional
steps are essential to ensure that useful information is derived from the data.
In other words, the task of KDD is to emphasize the "high-level" application
of particular data mining methods. For convenience, in this book, we will use
the term data mining to refer to both tasks.

Although the term KDD and data mining have been used interchangeably,
there are different emphases in these two terms. KDD is more related to the
overall process (is thus concerned about the infrastructure) while data mining
is more concerned with the actual mining algorithms. In this book, we will
mainly use the term data mining, although in sometimes we will discuss the
infrastructure of the mining process (particularly in Chapter 11).

Knowledge discovery in databases creates the context for developing the
tools needed to control the flood of data. In practice, a large portion of the
applications effort can go into properly formulating the problem (asking the
right question) rather than optimizing the algorithmic details of a particular
data mining method. [Fayyad, Piatetsky-Shapiro and Smyth 1996].

Knowledge discovery in databases has four main characteristics [Piatetsky-
Shapiro and Frawley 1991]:

(i) the discovered knowledge is represented in a high-level language
which can be understood by human users;
(ii) the discoveries accurately portray the contents of the database;
(iii) the discovered knowledge is interesting according to users; and
(iv) the discovery process is efficient.

Important issues in data mining include the following:
• human-centered;
• subjective measures of interestingness (e.g., unexpected and

actionable);
• different types (automated or user-guided);
• visualization;
• enhancement from current un-mature, ad-hoc status (many

algorithms, little systematic framework)
As a remark, [Silberschatz and Tuzhilin 1996] and [Dong and Li 1998]

discussed the issue of interestingness. The notions of distance between rules
and distance between neighborhoods of rules are proposed to reflect the
"interestingness" of a discovered rule. The neighborhood-based
interestingness of a rule is then defined in terms of the pattern of the
fluctuation of confidences or the density of mined rules in some of its
neighborhoods. The interesting rules can be ranked by combining some
neighborhood-based characteristics, the support and confidence of the rules,
and users' feedback [Dong and Li 1998].

It has been observed that there are three generation data mining systems
[Piatetsky-Shapiro 1997]:

First generation: These systems usually performed classification or
clustering, and relied upon a particular technique, such as decision
trees or neural networks.
Second generation: These tools provided better support in knowledge
discovery process.
Third generation: They differ from the previous two generations in
that they deal with the business end user rather than providing power
of data analysis. These shells have led to the development of
customized tools oriented towards specific business problems.

Many algorithms have been proposed for data mining. Statistical or
machine learning methods have been used to analyze the retrieved data. Most
algorithms developed for data mining typically demonstrate the inductive
learning process.

10.6.3 DATA MINING VERSUS MACHINE LEARNING

Statistics is obviously relevant to data mining because that field has always
focused on construction of models from data. Databases, too, is clearly
central because current applications of data mining can involve very large
corpora of information that are not necessarily in flat file form. One may
wonder what is left to be claimed by computational intelligence and, in
particular, machine learning. [Quinlan 1999] offers a recent discussion on data
mining from a computational perspective from a long-time machine learning
researcher.

The idea of unsupervised learning from basic facts (axioms) or from data
has fascinated researchers for decades (Ramakrishnan and Grama 1999].
Despite the similarities, however, one important factor we should bear in mind
is that the size of data may make a big difference for machine learning and
data mining. Finding an appropriate structure to conduct machine learning
could be a task which is NP-hard [Dean, Allen and Aloimonos 1995]. In fact,
computational learning theory has been developed for dealing with related
computational problems. Though machine learning methods can be adopted
for data mining purpose, it would also be desirable to explore new methods
that directly address the need of decision support queries. Another difference
is the objective. In fact, for machine learning, the emphasis of research has
been on inference mechanisms involved in the learning process. Although
much attention has been paid in developing efficient algorithms and even
though researchers are aware of the importance of scaling up, algorithms
developed usually assume the data are residing on the main memory. The
driving force of machine learning research has been largely from academy,
although many algorithms have found many applications (such as the case of
ID3 or C4.5). In contrast, the driving force of data mining is mainly from
business and industry. Some machine learning techniques are not of interest to
data mining practitioners, such as learning by analogy or by examples. The
data mining community has also initiated some new types of rules, such as
association rules (to be discussed in Section 10.8), which can be effectively

studied by incorporating computational intelligence techniques. Therefore,
data mining and machine learning are different to each other, but may also
benefit each other.

Authors in [Lin and Cercone 1997] discussed particular methods used to
discover patterns (or knowledge) in ultra large data sets in the light of model
representation and evaluation. In particular, it has been noticed that data
dependencies (functional dependencies) in DBMSs are defined during the
design of conceptual schema, whereas in machine learning they are induced
from given data. Depending on how data dependencies are perceived, their use
in these two disciplines is different. For example, data dependencies in
DBMSs are used for normalizing relations and indexing relations, whereas in
machine learning they are used as a preprocessing step of a knowledge
discovery technique. The purpose of this preprocessing is to reduce the
number of attributes in a given data set, to divide continuous values of an
attribute into categories, for testing a hypothesis, or for constructing a data
dependency graph.

Researchers have warned of several tricky issues in data mining. Inherited
from machine learning methods, KDD may pursue a harmful equation of
"knowledge = concepts." Research on automation of scientific discovery in
natural sciences takes a broader perspective on knowledge. Since a narrow
view of knowledge is accompanied by a narrow view of the discovery method,
scientific discovery can shed some light on KDD with a broader vision of
knowledge and discovery method [Zytkow 1997]. Another remark is from
John McCarthy, who has warned that the main technical point of data mining
is that functions and predicates involving the phenomena should be explicit in
the logical sentence and not just present in the mind of the person doing the
data mining [McCarthy 1996].

10.6.4 DATA MINING VERSUS EXTENDED RETRIEVAL

The organization of this book allows us to examine issues related to data
mining from the perspective of retrieval systems. Indeed, in a sense data
mining can be considered as extended retrieval in the sense discussed in
Chapter 7, because it tries to max out the information stored there and tries to
derive new knowledge which were not explicitly stored. However, it takes a
form completely different from the approach presented in Chapter 7. The
approach discussed there shares some concerns with machine learning using
analogy, and is thus based on individual examples (which are retrieved and
used as analogs). On the other hand, data mining is only interested in a flood
of data. Although the extended retrieval (discussed in Chapter 7) and
knowledge discovery both generate new knowledge, the form of generated
knowledge is very different. In the case of data mining, the generated
knowledge contains the condensed information extracted from structured
databases, while in the case of extended retrieval, the generated knowledge is
through the mapping of structure information (which is usually not considered

in data mining). Therefore, extended retrieval as discussed in Chapter 7 and
data mining techniques discussed in this chapter represent two complementary
approaches of bridging data and knowledge.

10.6.5 DATA MINING VERSUS STATISTIC ANALYSIS AND
INTELLIGENT DATA ANALYSIS

The relationship between data mining on one hand, and statistical analysis
and other kinds of intelligent data analysis on the other hand, has been
addressed by many authors, including [Elder and Pregibon 1995, Glymour,
Madigan, Pregibon, and Smyth 1996, Hosking, Pednault and Sudan 1996,
Huber 1997, Hand 1997, 1998]. Some opinions of these authors are
summarized below.
• Different objectives: To many statisticians, data mining is a term

synonymous with data dredging or data fishing. The objective of data
analysis is not to model the fleeting random patterns of the moment, but
to model the underlying structures which give rise to consistent and
replicable patterns. Comparing with the traditional interest of
computational intelligence, statistics may have little to offer the search
architectures in a data mining search, but a great deal to offer in
evaluating hypotheses used in the search and evaluating the results of the
search, as well as in applying the results. Understanding causation is the
hidden motivation behind the historical development of statistics
[Glymour, Madigan, Pregibon and Smyth 1996].

• Different kinds of problems: To some extent, the differences between
statistical and data mining approaches to modeling and inference are
related to the different kinds of problems on which these approaches have
been used. For example, statisticians tend to work with relatively simple
models for which issues of computational speed have rarely been a
concern.

• Different kinds of data to be handled: According to [Hand 1997, 1998],
statistics might be described as being characterized by data sets which are
small and clean, and permit straightforward answers via intensive analysis
of single data sets. Data sets used in statistic analysis are static, often
collected to answer the particular problem being addressed, and are solely
numeric. In contrast, real-world database data are dirty, inconsistent, and
may be mixed with different types. Some critics from statistics believe
that scaling-up of data mining algorithms is problematic, because
computational complexity of many procedures explodes with increasing
data size. The available success stories suggest that the real function of
data mining and KDD is not machine discovery of interesting structures
by itself, but targeted extraction and reduction of data to a size and format
suitable for human inspection [Huber 1997].

• Different goals of inference: Starting from the classical statistical
inference, both statistical learning theory and computational learning
theory have provided productive extensions as theoretical results

[Hosking, Pednault, and Sudan, 1997]. It has been noticed that the
inference procedures of classical statistics involve repeated sampling
under a given statistical model and statistical learning theory bases its
inferences on repeated sampling from an unknown distribution of the
data. In contrast, the PAC-learning results from computational learning
theory seek to identify modeling procedures that have a high probability
of near-optimality over all possible distributions of data.

Nevertheless, some of the differences present opportunities for statisticians
and data miners to learn from each other's approaches.

10.6.6 DATA MINING MECHANISM: DATA MINING FROM A
DATABASE PERSPECTIVE

For researchers from the database management systems community, the
focus has been on the concern of database-centric data mining, namely,
studying data mining by staying with traditional issues related to DBMS.
[Ullman 1998] believes that the term data mining has been a big umbrella
covering several domains that bear little if any relationship. Data mining
provides the opportunity to increase human capabilities, in particular the
ability to get answers from very large bodies of information that were not
created for the purpose of answering that query. Systems issues include
scalability, usability, reusability, generality and efficiency. However, data
mining is not really a new field. Though the task set for data mining itself may
be far from straightforward, data mining is not a core technology. In fact, data
mining can be considered as an extension of traditional DBMS querying
process, as indicated in the two research programs proposed by [Imielinski
and Mannila, 1996]. The short term program is concerned with developing
efficient algorithms implementing data mining tools on the top of large
databases and utilizing the existing DBMS support. The long term program is
concerned with building optimizing compilers for ad hoc queries and
embedding queries in application programming interfaces. A discussion of
SQL-aware data mining systems can be found in [Chaudhuri 1998]. For
simplicity, we will refer the database techniques needed for supporting data
mining as data mining mechanism. Some specific issues related to the data
mining mechanism are briefly discussed in Section 10.8.3.5.

10.6.7 SUMMARY OF FEATURES

In summary, we notice that data mining shares some common concerns
with other research fields such as machine learning and statistics, but it also
has its unique features, which are mainly driven from analyzing a huge size of
data needed in decision support queries. From a database perspective, data
mining has imposed new challenges for traditional database techniques.
Nevertheless, data mining is not a new field within DBMS research. It may be
more appropriately viewed as applying computational intelligence principles

to databases. In the remaining part of this chapter (as well as in this book), we
will stay with this perspective.

10.7 CATEGORIZING DATA MINING TECHNIQUES

We now provide an overview on various data mining techniques by
categorizing them. Different criteria can be used for this purpose.

10.7.1 WHAT IS TO BE DISCOVERED

One criterion for categorizing data mining is based on what is to be
discovered. The following are some typical cases.
• Regularity: In many cases we are interested in knowledge patterns or

regularity of data. This is the most popular case and will be further
examined in the next section.

• Single datum: In some other cases, we may be interested in some specific
items of data or single pieces of information (singular datum). Note that
this is not simply to discover the outliers. The purpose of such kind of
analysis is to increase the efficiency of knowledge works. For example,
such kind of data mining may be useful in the fight against criminality, in
particular in domains such as drug trafficking or the theft, transport and
sales of art objects or cars. Several cases will be analyzied, and even the
so-called neighborhoods should be explored [Siklossy and Ayel 1997].

10.7.2 DISCOVERY OR PREDICTION

Data mining problems can also be divided into two general categories:
prediction and knowledge discovery. Prediction is arguably the strongest goal
of data mining, has the greatest potential payoff and has the most precise
description. Knowledge discovery is an all-encompassing label for many
topics related to decision support. Knowledge discovery problems usually
describe a stage prior to prediction, where information is insufficient for
prediction. Knowledge discovery is complementary to predictive mining, but
is closer to decision support than decision making.
• Prediction (classification, regression, time series): The two central types

of prediction problems are classification and regress. Time series is a
specialized type of regression or occasionally a classification problem,
where measurements are taken over time for the same features.

• Knowledge discovery: It includes deviation detection, database
segmentation, clustering, association rules, summarization, visualization,
text mining, as well as others.

Predictive data mining requires data modeling (which is different from data
reduction). There is also a concern related to timelines in predictive data
mining. From the perspective of database systems, the efficient storage and
query of time-stamped information is a complex task. From a predictive data-

mining perspective, the time-stamped data greatly increase the dimensions of
problem solving in a completely different direction. Instead of cases with one
measured value for each feature, cases have the same featured measured at
different times. Predictive data-mining methods prefer the classical sample
and case model of data but have difficulties reasoning with time and its greatly
increased dimensions.

10.7.3 SYMBOLIC, CONNECTIONISM AND EVOLUTIONARY
ALGORITHMS

As already discussed in Secion 10.6, many data mining techniques have a
close relationship with machine learning. Just like machine learning
algorithms, data mining techniques could be based on symbolic,
connectionism, evolutionary, or some other forms. For example, there has
been a growing interest in data mining using evolutionary algorithms.
Research topics include the following [AAAI 99]:
• Evolutionary algorithms (EA) for classification, clustering, dependence

modeling, regression, time series and other data mining tasks;
• Discovery of comprehensible, interesting knowledge with EA;
• Scaling up EA for very large databases;
• Comparison between EA and other data mining methods;
• Genetic operators tailored for data mining tasks;
• Incorporating domain knowledge in EA;
• Integrating EA with DBMSs;
• Data mining with evolutionary, intelligent agents;
• Hybrid (such as neural-genetic, rule induction-genetic) EA;
• Data pre-processing (such as data cleansing, attribute selection) with EA;
• Post-processing of the discovered knowledge with EA;
• Mining semi-structured or unstructured data (such as text mining) with

EA.

10.7.4 CLASSIFYING DATA MINING METHODS

As pointed out by [Chen, Han and Yu 1996], data mining techniques can be
classified by different criteria, such as the following:
• By what kinds of databases to work on (such as relational databases,

object-oriented databases, etc.);
• By what kind of knowledge to be minded (such as association rules or

characteristic rules); or
• By what kind of techniques to be utilized (such as data-driven, query-

driven).
In the following, we take a look on what kind of knowledge to be mined, as

discussed in [Chen, Han and Yu 1996]:
• Association rules (to be discussed in the next section);

• Data generalization and summarization tools: The most popularly used
data mining and data analysis tools.

• Data classification: It is the process that finds the common properties
among a set of objects in a database and classifies them into different
classes, according to a classification model. The objective of the
classification is to first analyze the training data and develop an accurate
description or a model for each class using the features available in the
data. Some machine learning techniques, such as ID3, are closely related
to discovery of classification knowledge.

• Data clustering: It is the process of grouping physical or abstract objects
into classes of similar objects. Clustering analysis helps construct
meaningful partitioning of a large set of objects based on a divide and
conquer methodology which decomposes a large scale system into
smaller componets to simpify design and implementation. The task of
clustering is maximizing the intraclass similarity and minimizing the
interclass similarity. It has a close relationship with spatial data mining
(see below);

• Spatial/temporal data mining: It is concerned with data mining involving
spatial and/or temporal data. There is an interesting relationship between
these spatial and temporal data mining (for example, the problem of
temporal data mining can be converted to spatial data mining).

• Mining path traversal patterns: There is an interesting relationship
between data mining and Internet. This relationship has several aspects.
The Internet provides a huge resource for data mining. Note also that
recently there have been various efforts to apply data mining for Web
page analysis. [Chen, Han and Yu 1996] contains a brief summary on this
topic.

In addition, the following types of knowledge discovery have also been
identified:
• Pattern-based similarity search,
• Data mining query languages and graphical user interface, and
• Sequential patterns.

10.8 ASSOCIATION RULES

10.8.1 TERMINOLOGY

We now take a closer look at the association rules. Bar-code technology has
made it possible for retail organizations to collect and store massive amounts
of sales data, referred to as basket data. Here we talk about transaction
databases; a transaction database is usually a relation consisting of
transactions as tuples (each transaction is a list of items purchased by a
customer in one shopping activity -- so just think about your receipt). (Note
the term "transaction database" is NOT same as "database transaction"!)

Given a database of sales transactions (each transaction in the transaction
databases has a transaction ID called TID), it is desirable to discover the
important associations among items such that the presence of some items in a
transaction will imply the presence of other items in the same transaction.
(Note: Here we are not talking about transaction processing!) Association
r ules ar e statements o f the f or m " 70 % o f cu s to mer s th at pu rch as e 2% milk will
also purchase bread." Finding customer purchase patterns is an important
task for many organizations (such as for supermarkets to promote sales).

The constructed association rules take the format of "Head :- Body" (or
equivalently: Body → Head), which means: if a customer buys items in the
Body, he also buys the Head. It may also written as LHS → RHS (LHS: Left
Hand Side, RHS: Right Hand Side).

Two important measures used to indicate the strength of association rules
are support and confidence. The definitions of these two concepts are given
below.
• Support: The support for a set is the percentage of transactions that

contain all of these items. The support for a rule LHS→RHS (Or:
Body→Head) is the support for the set of items LHS ∪ RHS ("LHS and
RHS appear together"). The formula used for calculation is:

s = (number of transactions involving all items in LHS and RHS of this rule)/
(number of total transactions).

The rule is satisfied in the set of transactions T with the support s if and
only if at least s% of transactions in T that contain all items appearing in
either LHS or RHS. The support is the joint probability of finding LHS
and RHS in the same transaction.

• Confidence: The confidence for a rule LHS→RHS is the percentage of
such transactions that also contain all items in RHS . It indicates the
degree of correlation between purchases of these sets of items. The
formula used for calculation is:

c = (number of transactions involving all items in LHS and RHS of the rule)/
(number of transactions involving all items in LHS).

The rule is satisfied in the set of transactions T with the confidence factor
c if and only if at least c% of transactions in T that satisfy (contain) LHS
also satisfy (contain) the RHS. The confidence is the conditional
probability in the same transaction of finding RHS having found LHS.

Both support and confidence are represented by a number between 0 and 1
(the percentage involved in the calculation). A threshold (such as 0.1) is used
as a cut-off point for support, and a (different) threshold (such as 0.2) is used
as a cut-off point for confidence. Note some authors use the number of
transactions as support, confidence and threshold. It is straightforward to
convert from one way to another. For example, if threshold is 0.1 and total
transactions are 1000, then the threshold can be converted to 100 (in terms of
number of transactions.) A rule with support or confidence below threshold is
considered as not strong enough to be accepted. The meaning of support and
confidence can be studied from an example with initial transaction data shown
in Table 10.4(a) (revised from [Meo, Psaila and Ceri, 1996]).

Table 10.4(a) The purchase table for a big store
TID customer item date price quantity
100
100
200
200
200
300
400
400

C1
C1
C2
C2
C2
C3
C4
C4

ski pants
hiking boots
color shirts
brown boots
jackets
jackets
color shirts
jackets

01/11/99
01/11/99
01/12/99
01/12/99
01/12/99
01/14/99
01/14/99
01/14/99

150
180
28
160
250
260
28
260

2
1
3
2
2
1
2
3

For convenience of use, the purchase table is grouped by transactions as
shown in Table 10.3(b) (In a sense this is to perform denormalization as
discussed in Chapter 4). In the following, we will just use this table.

Table 10.4(b) The purchase table grouped by transactions
TID customer item date price quantity
100

200

300

400

C1

C2

C3

C4
C4

ski pants
hiking boots

color bags
brown boots
jackets
jackets

color bags
jackets

01/11/99
01/11/99

01/12/99
01/12/99
01/12/99
01/14/99

01/14/99
01/14/99

150
180

28
160
250
260

28
260

2
1

3
2
2
1

2
3

Some simple association rules can be found as shown in table 10.4(c). (S
stands for support, C for confidence):

Table 10.4(c) Some association rules mined
Rule # Body Head Support S Confidence C
1
2
3
4
5
6
7

ski pants
hiking boots
color bags
color bags
brown boots
brown boots
jackets

hiking boots
ski pants
brown boots
jackets
color bags
jackets
color bags

.25

.25

.25

.5

.25

.25

.5

1
1
.5
1
.5
1
.66

Now let us verify S and C for rule 3: Item in LHS: "color bags" appears in
TID=2, TID=4; Item in RHS: "brown boots" appears in TID=2. So only
TID=2 involve all items in LHS and RHS. We have the following results (the
vertical bars are used to indicate the cardinality of the set, or the number of
elements in the set):

S = |{TID 2}| /|TID 1, 2, 3, 4}|= 0.25,
C = |{TID 2}| / |{TID 2, TID 4}| = 0.5.

As another example, let us verify S and C for rule 7 (LHS "jackets" in TIDs 2,
3, 4; RHS "color bags" in TID 2, 4):

S = |{TID 2, TID 4}| / |{TID 1, TID 2, TID 3, TID 4}| = 0.5.
C = |{TID 2, TID 4}| / |{TID 2, TID 3, TID 4}| = 2/3 = 0.667

10.8.2 FINDING ASSOCIATION RULES USING APRIORI
ALGORITHM

Algorithm Apriori constructs a candidate set of large itemsets, counts the
number of occurrences of each candidate itemset, and then determines large
itemsets based on a predetermined minimum support. The trick of the
algorithm is the so-called the Apriori property: Every subset of a frequent
itemset must also be a frequent itemset. The following are some basic
terminology.

• Itemset: A set of items.
• k-itemset: An itemset having k items.
• Large itemset: itemsets with minimum support.
• Lk: Set of large k-itemsets
• Ck: Set of condidate k-itemsets

The following example illustrates the process of large item set generation
(taken from [Chen, Han and Yu 1996] (assuming minimum transaction
support required is two). Consider the transaction database shown in Table
10.5(a).

Table 10.5(a) Database D:
TID ITEMS
1000
2000
3000
4000

A C D
B C E
A B C E
B E

We now illustrate how to process to generate candidate itemsets and large
itemsets. Scanning D, we have the data mining process shown in Tables
10.5(b) to 10.5(d).

Table 10.5(b): First pass: C1 and L1

C1 Itemset Support L1 Itemset Support
A
B
C
D
E

2
3
3
2
3

A
B
C
D

2
3
3
3

Table 10.5(c) Second pass: C2 and L2

C2 Itemset Support L2 Itemset Support
A B
A C
A E
B C
B E
C E

1
2
1
2
3
2

A C
B C
B E
C E

2
2
3
2

Table 10.5(d) Third pass: C2 and L2

C3 Itemset Support L3 Itemset Support
BCE 2 BCE 2

Note that the Apriori algorithm has a prune phase which is best illustrated
in the last pass in the above example. (It is also used in previous passes, but to
no significant effect.) Why we do not consider ABC or ABE? Because, for
example, AB (the subset of ABC) is not a large 2-itemset, so ABC is not
qualified in large 3-itemset. Now you should be able to answer the following
question: Why should we stop at 3-itemset? Or: Why don't we consider 4-
itemsets at all? For more discussion on the prune phase, see [Agrawal and
Srikant, 1994].
 The Apriori algorithm is now sketched below.

L(1) = {large singular item sets};
for (k=2 ; L(k-1) k++) do begin
 C(k) = Apriori-generation(L(k-1)); // new candidates
 for each transaction t ∈ D begin

 C(t) = subset(C(k),t); // Candidates contained in t
 for each candidate c ∈ C(t) do

 c-count ++;
 end;
L(k) = {c C(k) | c-count ≥ minimum support}

end
∪k L(k)

return
__

The Apriori-generation function takes as argument L(k-1), the set of all
large (k-1)-item sets. It returns a superset of the set of al large k-item sets. The
function works as follows: First, in the join step, we join L(k-1) with L(k-1):

insert into C(k)
 select p-item(1), p-item(1),... p-item(k-1), q-item(k-1),
 from L(k-1) as p, L(k-1) as q
 where p-item(1) = q-item(1),...,
 p-item(k-2) = q-item(k-2),
 p-item(k-1) < q-item(k-1)

Next, in the prune step, we delete all the item sets c in C(k) such that some
(k-1)-subset of c is not in L(k-1):

For each item sets c in C(k) do
 For each (k-1)-subsets s of c do
 If (s not in L(k-1)) then
 delete c from C(k);

The subset(C(k),t) function can be sketched as follows. Candidate items sets
C(k) are stored in a hash-tree. A node of the hash-tree either contains a list of
item sets (a leaf node) or a hash table (an interior node). In order to add to the
c items set: The hash-tree is scanned from root to leaf. In an interior node of
depth d, the branch to follow is the result of the hash function applied to c[d].
All nodes are initially created as leaf nodes . When the n umber of items sets in a
leaf node exceeds a specified threshold, the leaf node is converted to an
interior node.

In order to find all items sets contained in transaction t, the items sets
contained in a leaf node are found and added to the answer set. In an interior
node that has been reached by hashing on t[j], all t[k](kj) will be hashed and
this procedure will be recursively applied to the node in the corresponding
bucket. At the root node, every itemset is hashed.

10.8.3 MORE ADVANCED STUDIES OF ASSOCIATION RULES

Research activities in finding association rules have been quite active in the
last few years. In this section, we provide a discussion on some advanced
studies on this topic. Our discussion is not intended to be complete, but to be
representative.

10.8.3.1 Extension of association rules
Association rules have been extended in many ways. [Agrawal, Imielinski,

and Swami 1993] is one of the earliest papers on mining association rules in
transaction databases (databases containing transactions of customers'
baskets). Also considers buffer management and pruning techniques.
[Agrawal and Srikant 1994] proposed the well-known apriori algorithm to
improve the efficiency of finding large itemsets. [Srikant and Agrawal 1995]
further considers generalized association rules involving hierarchies. [Srikant
and Agrawal 1996] extends association rules to handle intervals as well as
categories. [Srikant, Vu and Agrawal 1997] discusses how to incorporate user-
specified constraints to find rules containing a specific item or rules that
contain children of a specific item in a hierarchy. [Bayardo Jr., Agrawal, and
Gunopulos 1999] is a further study of using user-specified constraints for
mining association rules. In addition, dense databases are considered; they are
different from transaction databases which consist of itemsets that are "sparse"
(as studied in earlier literature).

10.8.3.2 Sampling techniques in finding association rules
Sampling large databases in mining association rules is based on a portion

of the database from the whole database in order to decrease the operation of
disk I/O. The tradoff for this method is the possibility of missing the real
frequency sets. The following techniques can be used to avoid missing the
frequency sets: decrease the frequency threshold during mining of the sample;

use negative border to further increase the supersets which are possible to be
the real frequent sets; keep the sample size large enough to represent the
whole database. [Toivonen 1996] is a well-known paper on the use of
sampling techniques for association rules.

[Srikant and Agrawal 1996] extends association rules to handle intervals as
well as categories. [Srikant, Vu and Agrawal 1997] discusses how to
incorporate user-specified constraints to find rules containing a specific item
or rules that contain children of a specific item in a hierarchy.

10.8.3.3 Variations of association rules
In addition to extensions, there are also various extensions which digress

from the original studies as cited in 10.8.3.2. For example, [Carter, Hamilton
and Cercone 1997] introduced measures share, concidence and dominance as
alternatives to the standard itemset methodology mesure of support. [Lin and
Kedem 1998] noticed discovering frequent itermsets typically takes a bottom-
up breadth-first search and performance drastically decreases when some of
the maximal frequent itemsets are relatively long. A new algorithm is
proposed which is still bottom-up, but a restricted search is also conducted in
the top-down direction. This search is used for mainitaining and updating a
data structure called the maximum frequent candidate set.

Much of research work from J. Han's group is rooted in attribute-oriented
induction. Mining association rules at multiple concept levels may lead to
discovery of more specific and concrete knowledge from data, as is discussed
in [Han and Fu 1995]. Relaxation of the rule conditions for finding "level-
crossing" association rules is also discussed.

In a more recent study, [Hidber 1999] presents an algorithm to compute
large itemsets online. The user is free to change the support threshold any time
during the first scan of the transaction sequence. The algorithm maintains a
superset of all large itemsets and for each itemset a shrinking, deterministic
interval on its support. After at most two scans the algorithm terminates with
the precise support for each large itemset.

10.8.3.4 Clustering and representative association rules
Since many association rules many be found in the same transaction

database, it makes sense to ask where there are any most important findings
shared by these rules. Different criteria have been developed. Representative
association rules are defined as a least set of rules that covers all association
rules satisfying certain user specified constraints. A user may be provided
with a set of representative association rules instead of the whole set of
association rules. The non-representative association rules may be generated
on demand by means of the cover operator [Kryszkiewicz 1998]. [Lent,
Swami and Widom 1997] discusses how to cluster two-dimensional
association rules in large databases.

10.8.3.5 Association rules and data mining mechanism
Association rules discovery process has also spawned research work related

to the basic data mining mechanism (as discussed in 10.6.6). For example,
[Holsheimer, Kersten, Mannila and Toivonen 1995] discusses how general
purpose database management systems can be used for data mining. [Meo,
Psaila and Ceri 1996, Meo, Psaila and Ceri 1998a] proposes extending SQL
for mining association rules. A more recent paper from the same author group
[Meo, Psaila, and Ceri 1998b] discussed related issues in more depth. In
[Agrawal and Shim 1996], issues related to loosely and tightly-coupled data
mining techniques are discussed. Extending SQL. An extended study of
[Agrawal and Shim 1996] can be found in [Sarawagi, Thomas, and Agrawal
1998].

SUMMARY

In this chapter we have provided an overview on machine learning and data
mining, and discussed several basic data mining techniques. There are a
number of directions which may require more in-depth research in the years to
come [Han 1997]. We have already mentioned some important issues, such as
support of data mining query languages and efficient, interactive, ad-hoc data
mining (Section 10.6.6). In addition, Section 10.8.3 provides a long list of
references for more advanced study on mining association rules. There are
many other research issues need to be examined, including (a) handling
increasingly complex data (including semi-structured and unstructured data,
hypertext, documents, spatial and multimedia data); (b) high performance data
mining (efficient and scalable mining algorithms will be further enhanced by
developing parallel, distributed and incremental data mining algorithms); (c)
user interface (including visualization), and (d) integration of data mining
techniques with data warehousing and OLAP technology. This last issue will
be examined in the next chapter (Chapter 11). Chapter 12 is also related to
data mining, but with different focus. In Chapter 12 (and continued in
Chapter 13), we study the issue of reasoning under uncertainty. A seemingly
quite different issue, uncertain reasoning actually offers powerful techniques
which can be used in data mining.

SELF-EXAMINATION QUESTIONS

1 . Provide a brief discussion on knowledge generation, and compare
knowledge generation using extended retrieval (as discussed in Chapter
7) versus knowledge discovery as discussed in this chapter.

2. Give an example to illustrate how genetic algorithms can be used for idea
generation (as discussed in Chapter 8).

3. Consider the "mastermind" game discussed in Section 10.5.2. Suppose
the number in the mind of first player is "111111;" also assume
current candidate solutions are A, B, C, D, as shown below.

(A) 011001
(B) 100111
(C) 101010
(D) 010111

How will you solve this problem using a genetic algorithm? Show the
steps of problem solving and briefly explain how crossover and mutation
operators are used to solve the problem.

4. Give a brief discussion on two machine learning methods which may be
useful for data mining. Also provide a brief discussion on one machine
learning method which is not appropriate for data mining.

5. In the association rules discussed in Section 10.8, quantities of purchase
are not considered. What is your opinion on the importance of quantities
in discovery of association rules?

6. Collect 10 receipts of supermarket shopping from your friends. Construct
a transaction database from these receipts. Use Apriori algorithm to find
association rules.

REFERENCES

AAAI 99, Workshop of Data mining with evolutionary algorithms: Research
directions, AAAI-99.
Agrawal, R., Imielinski, T. and Swami, A., Mining association rules
between sets of items in large databases, SIGMOD'93, 1993.
Agrawal, R. and Shim, K., Developing tightly-coupled data mining
applications on a relational database system, Proceedings KDD'96.
Agrawal, R. and Srikant, R., Fast algorithms for mining association rules,
Proceedings VLDB'94, 1994.
Bayardo Jr., R. J., Agrawal, R. and Gunopulos, D., Constraint-based rule
mining in large, dense databases, Proceedings ICDE'99, 1999.
Bigus, J. P., Data Mining with Neural Networks: Solving Business Problems -
From Application Development to Decision Support, McGraw-Hill, New
York, 1996.
Carter, C., Hamilton, H. J. and Cercone, N., Shared based measures for
itemsets, Proceedings PKDD'97, pp, 14-24, 1997.
Chaudhuri, S., Data mining and database systems: Where is the intersection?
Data Engineering Bulletin, 21(1), 4-8, 1998.
Chen, M. -S., Han, J., and Yu, P. S., Data Mining: An Overview from a
Database Perspective, IEEE transactions on knowledge and data engineering,
8(6), 866-897, 1996.

Dong, G. and Li, J., Interestingness of discovered assocation rules in terms of
neighborhood-based unexpectedness, Proceedings PAKDD'98, 1998.
Elder IV, J. F. and D. Pregibon, D., A statistical perspective on KDD,
Proceedings KDD 95, pp. 87-93, 1995. (A longer version is in Advances in
Knowledge Discovery and Data Mining, 1995.)
Etzioni, P., The World-Wide Web: Quagmire or gold mine? Communications
of the ACM, 39(11), pp. 65-68, 1996.
Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R.
(eds.), Advances in Knowledge Discovery and Data Mining, AAAI/MIT
Press, Menlo Park, CA, 1996.
Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P., The KDD process of
extracting useful knowledge from volumes of data, Communications of the
ACM, 39(11), 27-34, 1996.
Glymour, G. Madigan, D., Pregibon, D. and Smyth, P., Statistical inference
and data mining, Communications of the ACM, 39 (11), 35-41, 1996.
Han, J., Data mining: Where is it heading? Proceedings of 1997 International
Conference on Data Engineering (ICDE'97), Birmingham, England, p. 508,
1997.
Han, J. and Fu, Y., Discovery of multiple-level association rules from large
databases, Proc. VLDB '95, 420-431, 1995.
Hand, D. J., Intelligent data analysis: Issues and opportunities, in Liu, X.,
Cohen P. and Bertholds M. (eds.), Advances in Intelligent Data Analysis
(IDA-97) (LNCS 1280), 1-14, 1997.
Hand, D. J., Data mining: Statistics and more? American Statistician, 52(2),
112-118, 1998.
Hidber, C., Online Association Rule Mining, Proceedings SIGMOD, 1999.
Holsheimer, M., Kersten, M., Mannila, H. and Toivonen, H., A perspective
on databases and data mining, Proceedings Knowledge Discovery in
Databases (KDD'95), 1995.
Hosking, J. R. M., Pednault, E. P. D. and Sudan, M. A statistical
perspective on data mining, Future Generation Computer Systems, 13, 117-
134, 1997.
Huber, P. J. From large to huge: A statistician's reactions to KDD & DM,
Proceedings KDD-97, 304-308, 1997.
Imielinski, T. and Mannila, H., A database perspective on knowledge
discovery, Communications of the ACM, 39(11), 58-64, 1996.
Kasabov, N. K., Foundations of Neural Networks, Fuzzy Systems, and
Knowledge Engineering, MIT Press, Cambridge, MA, 1996.
Kryszkiewicz, M., Representative association rules, Proceedings PAKDD'98,
1998.
Lent, B., Swami, A. and Widom, J., Clustering association rules,
Proceedings ICDE'97, 1997.
Lin D.-I. and Kedem, Z. M., Pincer-search: A new algorithm for discovering
the maximum frequent set, Proceedings 6th EDBT, pp. 105-119, 1998.
Lin, T. Y. and Cercone, N. (eds.), Rough Sets and Data Mining: Analysis
for Imprecise Data, Kluwer Academic, Boston, MA, 1997.

Luger, G. and Stubblefield, W., Artificial Intelligence: Structures and
Strategies for Complex Problem Solving (3rd ed.), Addison-Wesley Longman,
Harlow, England, 1998.
McCarthy, J., Phenomenal data mining: From observations to phenomena,
1996, available at: http://www-formal.stanford.edu/jmc/data-mining/data-
mining.html.
Meo, R., Psaila, G. and Ceri, S., A new SQL-like operator for mining
association rules, Proceedings Conference on Very Large Data Bases
(VLDB'96), 1996.
Meo, R., Psaila, G. and Ceri, S., An Extension to SQL for Mining
Association Rules, Data Mining and Knowledge Discovery, 2(2), 195-224,
1998a.
Meo, R., Psaila, G. and Ceri, S., A tightly-coupled architecture for data
mining, Proceedings ICDE 1998, pp. 316-323, 1998b.
Mitchell, M., Introduction to Genetic Algorithms, MIT Press, Cambridge,
MA, 1998.
Pakath, R., Genetic algorithms, Chapter 41 in Holsapple, C. W. and
Whinston, A. B (eds.), Decision Support Systems: A Knowledge-Based
Approach, West Publishing Company, Minneapolis/St. Paul, 1996.
Piatetsky-Shapiro, G., Data mining and knowledge discovery: The third
generation, in Z. W. Ras and Skowron (eds.), Foundations of Intelligent
Systems (LNAI 1325), pp. 48-49, 1997.
Piatetsky-Shapiro, G. and Frawley, W. (eds.), Knowledge Discovery in
Databases. AAAI/MIT Press, Menlo Park, CA, 1991.
Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann,
San Mateo, CA, 1993.
Quinlan, J. R., Bagging, boosting and CN4.5, Proceedings AAAI 1996,
AAAI Press, Menlo Park, CA, 1996.
Quinlan, R., Data Mining from an AI Perspective (Keynote speech),
Proceedings of the 15th International Conference on Data Engineering, 1999.
Ramakrishnan, N. and Ggrama, A. Y. (eds.), Special issue: Data mining:
from serendipity to science, IEEE Computer, 32(8), 34-75, 1999.
Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach,
Prentice Hall, Englewood Cliffs, NJ, 1995.
Sarawagi, S., Thomas, S. and Agrawal, R., Integrating association rule
mining with relational database systems: Alternatives and implications, Proc.
SIGMOD'98, 1998.
Siklossy, L. and Ayel, M., Data discovery, in Liu, X., Cohen P. and
Berthold, M. (eds.), Advances in Intelligent Data Analysis (IDA '97), LNCS
1280, pp. 459-463, 1997.
Silberschatz, A. and Tuzhilin, A., What makes patterns interesting in
knowledge discovery systems. IEEE Transactions on Knowledge and Data
Engineering, 8(6), 970-974, 1996.
Simon, H. A., Why should machines learn? In R. S. Michalski, J. G.
Carbonell and T. M. Mitchell (eds.), Machine Learning: An Artificial
Intelligence Approach, Vol. I., Tioga, Palo Alto, CA, 1983.

NamacB

NamacB

http://www-formal.stanford.edu/jmc/data-mining/data-mining.html
http://www-formal.stanford.edu/jmc/data-mining/data-mining.html

Srikant, R. and Agrawal, R., Mining generalized association rules,
Proceedings VLDB'95, 1995.
Srikant, R. and Agrawal, R., Mining quantitative association rules in large
relational tables, Proceedings SIGMOD'96, 1996.
Srikant, R., Vu, Q. and Agrawal, R., Mining association rules with item
constraints, Proc. KDD'97, 1997.
Toivonen, H., Sampling large databases for association rules, Proceedings
VLDB'96, 1996.
Ullman, J. D., Abstract of a talk given at University of Washington/Microsoft
workshop on data mining, 1998. Available at http://www-
db.stanford.edu/~ullman/pub/mining.txt.
Viliant, L. G., A theory of Learnable. Communications of the ACM, 27,
1134-1142, 1984.
Wah, B., Generalization and generalizability measures, IEEE Transactions on
Knowledge and Data Engineering, 11(1), 175-186, 1999.
Zytkow, J., Knowledge = concepts: a harmful equation, Proeedings KDD 97,
pp. 104-109, 1997.

NamacB

NamacB

http://www-db.stanford.edu/~ullman/pub/mining.txt
http://www-db.stanford.edu/~ullman/pub/mining.txt

Chapter 11

DATA WAREHOUSING , OLAP AND DATA
MINING

11.1 OVERVIEW

In the previous chapter we discussed useful data mining techniques for
decision support. It is important to keep in mind that data mining is not an
isolated phenomenon. Data mining is only a portion of the larger picture
concerning decision support queries, and is closely related to the task of
holistic analysis of organization data, usually referred to as On-Line
Analytical Processing, or OLAP (which was briefly introduced in Chapter 5).
A data warehouse (also introduced in Chapter 5) provides an ideal
environment where intelligent agents can fully utilize all the needed resources
for discovery of useful knowledge patterns. In this chapter, we examine the
issue of agent-based data mining in data warehouses. Starting from a
discussion on practical concerns related to decision support queries, we
examine data warehouses from a database perspective, with a focus on
maintenance of materialized views, as well as related indexing techniques.
The semantics of data mining on aggregating data are analyzed, and the gap
between OLAP and data mining is then examined. This discussion allows us
to introduce an integrated architecture for combined OLAP and data mining.

In the rest of this chapter, we first take a look at the issue of data mining in
data warehousing environment. The reason of why data mining is preferable
in data warehousing environment to non-warehousing environment is
examined from two aspects: the concerns from database management systems
proper, as well as the relationship between data mining and other activities in
a data warehousing environment. The first aspect leads us to an in-depth
examination of data warehousing from the perspective of materialized views
and indexing. The second aspect leads us to a discussion of decision support
queries and OLAP. The discussion allows us to consider an integrated
architecture which combines data mining and OLAP at the end of this chapter.

11.2 DATA MINING IN DATA WAREHOUSES

Data warehouses provide an excellent environment for database-centric
data mining. In this section, we examine several issues of database support for
data mining.

Data mining and query processing. [Imielinski 1996] discussed data mining
as a querying process, and proposed two research programs. The short-term
program calls for efficient algorithms implementing data mining tools on the
top of large databases and utilizing the existing DBMS support. The long-term
calls for building optimizing compilers for ad-hoc queries and embedding
queries in application programming interfaces.

There is a need to focus on generic scalability requirements rather than on
features tuned to specific algorithms where possible, and furthermore, there is
a need to build "SQL-aware." A lot of ongoing projects in the data mining
area have focused on inventing new data analysis techniques. Less work has
been done on scaling data analysis techniques over large data sets. In
designing the scalable implementations, some of the algorithms have made
assumptions that ignore the fact that a data warehouse will serve not just data
mining, but also traditional query processing [Chaudhuri 1998].

Data warehouses are deploying relational database technology for storing
and maintaining data. For pragmatic reasons, the data mining utilities should
assume a relational backend.

Today's data mining algorithms are invoked on a materialized disk-resident
data set. If data mining were to succeed, data mining must evolve to ad-hoc
data mining, where the data set which is minded is specified on-the-fly. In
other words, mining may be invoked on a data set that has been created on-
the-fly by the powerful query tools. Therefore, there is a need for building
SQL-aware data mining systems. Effectively using an SQL backend for data
mining applications is a nontrivial problem, because using the SQL backend
as much as possible in an obvious way may hurt performance. As we
implement mining algorithms that generate SQL efficiently, we also will
identify primitives that need to be incorporated in SQL. Again we draw
similarities with the OLAP world. Generation of SQL queries against the
backend clearly benefits from the CUBE construct. We can identify two goals
for studying possible extensions to SQL, extensions that:
• Strongly interact with core SQL primitives and can result in significant

performance improvement;
• Encapsulate a set of useful data mining primitives.

Data mining and meta-data. In a data warehouse, views which are
materialized or partially materialized contain valuable information such as
value distributions and other statistical information that are much more
accurate than those views which are run once in a while. A smarter system can

extract this valuable meta-data and, with a query feedback mecahnism,
maintain precise statistics [Roussopoulos 1998].

Performance issues. The on-going research program is concerned with an
efficient algorithm implementing machine learning tools (such as C4.5) on the
top of large databases and utilizing the existing DBMS support. For example,
training a classifier on a large training set stored in a database may require
multiple passes through the data using different orderings between attributes.
This can be implemented by utilizing DBMS support for aggregate operations,
indexes and database sorting (using ORDER BY clause in SQL).

11.2.1.1 Research issues
However, in the long run, database mining should learn from the general

experience of DBMS field and follow one of the key DBMS paradigms:
building optimizing compilers for ad-hoc queries and embedding queries in
application programming interfaces. Query languages, query optimization,
and transaction processing were the driving ideas behind the tremendous
growth of the database field since the 1960s. The focus should be on
increasing programmer productivity for KDD application development, and a
sort of Knowledge and Data Discovery Management Systems (KDDMS)
should be developed. To be more specific, first a KDD query language has to
be formally defined then query optimization tools would be developed to
compile queries into reasonably efficient execution plans. These execution
plans will include existing inductive learning and statistical data analysis
algorithms and may include new inductive tools as well. This process
essentially mirrors the development of query languages and query
optimization in relational databases. However, KDD query optimization will
be more challenging than relational query optimization due to the higher
expressive power of KDD queries. Another difficulty is that the border
between querying and discovery is blurred. Discovery is just a matter of the
expressive power of a query language (see remarks given in Chapter 7).

11.3 DECISION SUPPORT QUERIES, DATA
WAREHOUSE AND OLAP

11.3.1 DECISION SUPPORT QUERIES
The need for data warehouses is justified by the concerns behind decision

support queries, such as OLAP and data mining. An agent-based data mining
process prefers tightly-coupled environments so that data mining becomes part
of the database management process. Data warehouses provide such support.

Decision support queries are ad hoc user queries in various business
applications. In these applications, current and historical data are
comprehensively analyzed and explored, identifying useful trends and creating
summaries of the data, in order to support high-level decision making in data
warehousing environment [Widom 1995]. A class of stylized queries typically

involve group-by and aggregation operators. Applications dominated by such
queries are referred to as On-Line Analysis Processing (OLAP) [Chaudhuri
and Dayal 1997].

Recently the importance of integrating OLAP and data mining have been
widely addressed by database practitioners from industry's perspectives
[Parsaye 1997]. As a reply from academia for this practical need, studies on
multiple-level data mining [Han, Fu and Ng 1994] can be viewed as a step
closer to the goal of this integration. The various ways of mining knowledge
at multiple concept levels, such as progressive deepening, progressive
generalization, and interactive up-and-down, bear significant similarities with
OLAP operations (such as roll-up and drill-down). More recently, research
papers on integrated OLAP and data mining started emerging, particularly
from Han and his research group who investigated the issue of incorporating
data cubes into data mining techniques [Han 1997, 1998]

In the following, rather than presenting new algorithms for integrated
OLAP and data mining, we focus on the different and complementary roles of
OLAP and data mining in the overall process of intelligent data analysis in
data warehousing environments; that is, we examine how to put together
different aspects of OLAP and data mining.

We introduced the notion of decision support queries in Chapter 1. In order
to better understand the function of data warehouses, here we provide a little
more discussion on decision support queries These queries are intended to
comprehensively analyze/explore current and historical data, identify useful
trends and create summaries of data to support high-level decision making for
knowledge workers (executives, managers, analysts) [Chaudhuri and Dayal
1997]. There are three classes of data analysis tools [Ramakrishnam 1998]. In
addition to data mining, the other two are:

(1) Complex queries: Tools that support traditional SQL-style
queries, but designed to support complex ueries efficiently.
Relational DBMSs optimized for decision support applications.
(2) OLAP : Tools that support a class of stylized queries that typically
involve group-by and aggregation operators. Applications dominated
by such queries are called On-Line Analytic Processing, or OLAP.
These systems support a query style in which the data is best thought
of as a multidimensional array, and are influenced by end-user tools
such as spreadsheets, in addition to database query languages. OLAP
systems work in a mostly-read environment.

11.3.2 ARCHITECTURE OF DATA WAREHOUSES
11.3.2.1 Components in data warehouses

The data warehouse is integrated (containing integrated data, detailed and
summarized data, historical data and meta-data) so the data miner can
concentrate on mining data rather than cleansing and integrating data.

Data warehousing provides an effective approach to deal with complex
decision support queries over data from multiple sites. A data warehouse is a
subject-oriented, integrated, time-varying, non-volatile collection of data that

is used primarily in organizational decision making [Inmon 1996]. The key to
the data warehousing approach is to create a copy of all the data at some one
location, and to use the copy rather than going to the individual sources. Data
warehouses contain consolidated data from many sources (different business
units), spanning long time periods, and augmented with summary information.
Warehouses are much larger than other kinds of databases, sizes are much
larger, typical workloads involve ad hoc, fairly complex queries, and fast
response times are important. Since decision support often is the goal of data
warehousing, clearly warehouses may be tuned for decision support, and
perhaps vice versa.

A typical data warehousing architecture consists of the following:
• A relational database for data storage;
• Data marts, which are departmental subsets focused on selected

subjects;
• Back end and front end tools and utilities;
• Metadata: The system catalogs associated with a warehouse are very

large, and are often stored and managed in a separate database called
a metadata repository;

• Other components (depending on the design methods and the specific
needs of the organizations).

Figure 11.1 (on next page) depicts the architecture of a data warehouse. A
recent discussion on data warehouse creation, along with a comparison with
data integration is given in [Srivastava and Chen 1999].

11.3.2.2 Relationship between data warehousing and OLAP
Having described the basic architecture of data warehouses, we may further

examine the relationship between data warehousing and OLAP, which can be
elaborated as follows. Decision-support functions in a data warehouse involve
hundreds of complex aggregate queries over large volumes of data. To meet
the performance demands so that fast answers can be provided, virtually all
OLAP products resort to some degree of these aggregates. According to a
popular opinion from OLAP Council [Forsman, 1997], a data warehouse is
usually based on relational technology, while OLAP uses a multidimensional
view of aggregate data to provide quick access to strategic information for
further analysis. A data warehouse stores tactical information that answers
"who?" and "what?" questions about past events. OLAP systems go beyond
those questions; they are able to answer "what if?" and "why?" questions. A
typical OLAP calculation is more complex than simply summarizing data.

 Data Marts

 Data Mining

 Extract

 Sources OLAP tools
 Transform

 Operational
 Data Load
 Others
 Data Sources
 Tools
 Refresh Administration Repository
 &
 Management

Figure 11.1 Architecture of data warehouse

11.3.3 BASICS OF OLAP
11.3.3.1 Terminology
 We now describe the basics of OLAP. OLAP or multi-dimensional analysis
is a method of viewing aggregate data called measurements (e.g., sales,
expenses, etc.) along a set of dimensions such as product, brand, stored,
month, city and state, etc. An OLAP typically consists of three conceptual
tokens:

• Dimension: Each dimension is described by a set of attributes.
• Measure: Each of the numeric measures depends on a set of

dimensions, which provide the context for the measure. The
dimensions together are assumed to uniquely determine the
measure. Therefore, the multidimensional data views a measure
as a value in the multidimensional space of dimensions.

• Domain hierarchy: For example, "country," "state" and "city"
form a domain hierarchy.

Data

Serve

There are several basic approaches to implementing an OLAP:
• ROLAP (Relational OLAP): OLAP systems that store all information

(including fact tables) as relations. Note that the aggregations are stored
with the relational system itself.

• MOLAP (Mulitdimensional OLAP): OLAP systems that use arrays to
store multidimensional datasets.

In general, ROLAP is more flexible than MOLAP, but has more
computational overhead for managing many tables. One advantage of using
ROLAP is that sparse data sets may be stored more compactly in tables than
in arrays. Since ROLAP is an extension of the matured relational database
technique, we can take advantage of using SQL. In addition, ROLAP is very
scalable. However, one major advantage is its slow response time. In contrast,
MOLAP abandons the relational structure and uses a sparse matrix file
representation to store the aggregations efficiently. This gains efficiency, but
lacks flexibility, restricts the number of dimensions (7 to 10), and is limited to
small databases. (Remark on dimension: a relation can be viewed as a 2D
table or n-D table (each attribute represents a dimension). One advantage of
using MOLAP is that dense arrays are stored more compactly in the array
format than in tables. In addition, array lookups are simple arithmetic
operations which results in an instant response. A disadvantage of MOLAP is
long load times. Besides, MOLAP design becomes very massive very quickly
with the addition of multiple dimensions.

To get the best of both worlds, we can combine MOLAP with ROLAP.
Other approaches also exist. For example, LowLAP tools function so similarly
to MOLAP that they rely on a proprietary data set for their OLAP capabilities.
They offer advantages of an integrated user environment with a common GUI
and a feature-rich work space; but provide limited processing capabilities.

11.3.3.2 OLAP operations
 The two most well-known operations for OLAP queries are:

• Roll-up: This operation takes the current data object and does a
further group-by on one of the dimensions. For example, given
total sale by day, we can ask for total sale by month.

• Drill-down: As the converse of rule-up, this operation tries to get
more detailed presentation. For example, given total sale by
model, we can ask for total sale by model by year.

 Other operations include:
• Pivot (Its result is called a cross-tabulation),
• Slice (It is an equality selection, reducing the dimensionality of

data),
• Dice (It is the range selection), and
• Others.

In the following we illustrate the motivation behind the operation of pivot.
This example also illustrates the basic idea of the roll-up operator. Consider a
relational database on auto sales. The database is assumed to be in 3NF. Being

more specific, let us consider a relation in this database with schema (Model,
Year, Color, Dealer, Sales date). Now we want to have data aggregated by
Model, then by Year, and finally, by Color. Suppose the result is shown in
Table 11.1.

Table 11.1 Sales roll up
Model Year Color Sales

by model
by year
by color

Sales
by model
by year

Sales
by model

Toyota 1998 black 100
light 120

220
Toyota 1999 black 130

light 110
240

460

….Table 11.1 is not in first normal form (see Chapter 4 for a discussion on no-
first normal form relations). There are many null values. In addition, the
number of columns grows as the power set of the number of aggregated
attributes. A better way of presenting the needed information is shown in
Table 11.2, where a dummy value "ALL" is used to indicate the aggregation
data regardless of the actual value of a particular attribute (such as color)
[Gray, Bosworth, Layman and Pirahesh 1996].

If you examine Table 11.2 carefully, you may notice that it does not
aggregate the sales by year; that is, there are no rows aggregating sales by
color. For example, you will not be able to find that the total sales of black
Toyota is 230. This observation suggests a more symmetrical presentation is
needed. This results in the cross tabulation as shown in Table 11.3. The
operation involved here is called the pivot. Note how the cross tabulation table
can be obtained in a systematic way: when pivot is performed, the values that
appear in columns of the original presentation (such as "black," "light" for
Color, and "1998," "1999" for Year) now become labels of axes in the result
presentation.

Table 11.2 Sales summary in 1NF
Model Year Color Units
Toyota 1998 black 100
Toyota 1998 light 120
Toyota 1998 ALL 220
Toyota 1999 black 130
Toyota 1999 light 110
Toyota 1999 ALL 240
Toyota ALL ALL 460

Table 11.3 Toyota sales cross tabulation
Toyota 1998 1999 Total (ALL)
Black 100 130 230
Light 120 110 230
Total (ALL) 220 240 460

The cross tabulation in this example is a 2D (two dimensional) aggregation.
But this is just a special case. For example, if other automobile models (such
as Dodge, Ford, etc.) are added, it becomes a 3D aggregation. Generally
speaking, the traditional GROUP BY clause in SQL can be used to generate
the core of the N-dimensional data cube. The N-1 lower-dimensional
aggregates appear as points, lines, plains, cubes or hyper-cubes in the original
data cube. For this reason, a data CUBE operator was proposed [Gray,
Bosworth, Layman and Pirahesh 1996].

11.3.3.4 Star schema and snowflake schema
Most data warehouses use star schemas to represent the multidimensional

data model. In a star schema, there is a single fact table (which is at the center
of a star schema) and a single table for each dimension (dimension table).
[Chaudhuri and Dayal, 1997]. For convenience of discussion, we will use the
star schema shown in Figure 11.2, which is slightly revised from the example
appearing in many recent publications (e.g. [Chaudhuri and Dayal 1997]).

Figure 11.2 A star schema

Join operations in a star schema may be performed only between the fact
table and any of its dimensions. Data mining has frequently been carried out
on a view that is joined by the fact table with one or more dimension tables,
followed by possible project and select operations. In addition, to facilitate
data mining, such a kind of view is usually materialized.

Table 11.4 is revised from [Parsaye 1997], which can be considered as a
materialized view obtained by join operations on the star schema shown in
Figure 11.2. OrderID can be treated as TID in association rules. Both Figure

Fact table

OrderNo
StoreID
CustomerNO
ProdNo
DateKey
CityName
Sales
Profit

ProdNo
ProdName
ProdColor
Category

 Product

Date

DateKey
Date
Month
Quarter
Year

City

CName
State
Country

Order

OrderNo
OrderDate

Customer

CustomerNo
Cust.Name
Cust.Address

Store

StID
StSize

Sales

11.1 and Table 11.4 will be frequently cited by examples in the rest of this
chapter.

Table 11.4 A materialized view for sales profit

RID Product Color Store Size Profit
($1000s)

0
1
2
3
4
5
6
7
8

Jacket
Jacket
Jacket
Hat
Hat
Hat
Glove
Glove
Glove

Blue
Blue
Blue
Green
Green
Green
Green
Blue
Green

S1
S2
S3
S1
S2
S3
S1
S2
S3

Small
Medium
Large
Small
Medium
Large
Small
Medium
Large

-200
-100
7000
300

-1000
-100
2000
-300
200

 11.3.3.5 Granularity and aggregation levels
In OLAP, data can be examined at different levels.
Granularity level: Data at this level are individual elements and served as

base data. Various data mining techniques have been developed and applied at
this level, including those discussions that can be found in other chapters of
this volume.

Aggregation level: As shown in examples in Section 11.3.3.3, data can be
aggregated in many different ways (for example, sales by model by year, or
sales by model). Each level of aggregation is referred to as an aggregation
level. Data at aggregation levels are summary data.

Unique features of data mining techniques at these levels have not been
fully explored. The existence of aggregation levels provides new opportunities
for data mining carried out at different levels:

11.4 DATA WAREHOUSE AS MATERIALIZED VIEWS
AND INDEXING

11.4.1 REVIEW OF A POPULAR DEFINITION
Earlier in Chapter 4, we provided a brief discussion on data warehouses

based on a business perspective. However, this discussion requires some
further technical clarification. For example, we said that a data warehouse
consists of a copy of data acquired from the source data. What does this copy
look like? In fact, we may need to distinguish between a "true" copy
(duplicate), a derived copy, approximate duplicate, or something else. For this
reason, we need to examine the concept of data warehouse in more depth. In
fact, a data warehouse can be characterized using materialized views and
indexing. In the following, we will examine these two issues.

The WHIPS prototype developed at Stanford University is an interesting
research project for data warehouse creation and maintenance [Hammer,
Garcia-Molina, Widom, Labio, Zhuge 1995].

11.4.2 MATERIALIZED VIEWS
11.4.2.1 The necessity of using materialized views

Views are the most important asset of the relational model. Recall that we
have the following basic concepts in relational databases:

Relation (base table): It is a stored table;
External view (virtual view, or simply view): It is a virtual table
(derived relation defined in terms of base relations)
Materialized view: A view is materialized when it is stored in the
database, rather than computed from the base relations in response to
queries.

The general idea of the approach is to materialize certain expensive
computations that are frequently inquired, especially those involving
aggregate functions, such as count, sum, average, max, etc., and to store such
materialized views in a multidimensional database (called a data cube) for
decision support, knowledge discovery, and many other applications.

Commercial relational database products are used to discard views
immediately after they are delivered to the user or to a subsequent execution
phase. The cost for generating the views is for one-time-use only instead of
being amortized over multiple and/or shared results. Caching query results or
intermediate results for speeding up intra- and inter-query processing has been
studied widely. All these techniques share one basic idea: the reuse of views
to save cost.

In a data warehouse where query execution and I/O are magnified, the
mandate for reuse cannot be ignored. In addition, in an OLAP environment,
updates come in bulk rather than in small numbers, making incremental
update techniques more effectively amortized. Therefore, query optimizers
based on materialized view fragments are a necessity. Note that amortization
and reuse of views can only be possible if they can be discovered by the query
optimizer that decides to invoke those views which reduce the cost of the
query. The most common techniques for discovering views (in any of its
forms) in its most general form is an undecidable problem, but for the most
common queries can be reduced to an NP-complete problem. Furthermore, for
simple conjunctive query views, the time complexity is reduced to
polynomial-time and very efficient algorithms.

The benefit of using materialized views is significant. Index structures can
be built on the materialized view. Consequently, database access to the
materialized view can be much faster than recomputing the view. A
materialized view is just like a cache, which is a copy of the data that can be
accessed quickly.

Materialized views are useful in new applications such as data warehousing,
replication servers, chronicle or data recording systems, data visualization,
and mobile systems. Integrity constraint checking and query optimization can

also benefit from materialized views, but will not be emphasized in our
current context.

11.4.2.2 The many facets of materialized views
It is interesting to note the multifaceted form of relational views (virtual or

materialized), ranging from pure program to pure data (which is not
maintainable). Relational views are used both as a specification technique and
as an execution plan for the derivation of the warehouse data [Roussopoulos
1998].
• Pure program (derivation procedure): A virtual (unmaterialized) view is

a program specification, or the intension (in terms of deductive database
terminology) that generates data.

• Derived data: A materialized view can be considered as the extension
(again in terms of deductive database terminology) of the pure program
form. Therefore, it is derived data.

• Pure data: When we focus on the contents of the materialized views, they
are the result of executing the procedure used to derive them. The
derivation procedure is detached, so the views become pure data (i.e.,
converted from derived data to instances -- at least from the perspective
of users).

• Pure Index: When materialized views are implemented in certain ways,
such as through view indexes or view caches, their extension has only
pointers to the underlying data, which are dereferenced when the values
are needed. Therefore, materialized views are treated as pure indices.

• Hybrid data and index: A partially materialized view stores some
attributes as data while the rest are referenced through pointers, thus
combining data and indexes.

• OLAP aggregate/indexing: A very useful viewpoint of materialized views
in decision making is that they play the role of data cubes in OLAP. A
data cube contains data values aggregated from a collection of underlying
relation values. It corresponds to project operations in relational algebra
(Chapter 4) of the multi-dimensional space data to lesser dimensionality
subspaces and stores aggregate values in it. For example, a data cube may
provide aggregate values of sales data per month per product. A data cube
can be obtained as a set of materialized views or indexed views derived
from aggregation.

A discussion on these different forms gives us a better understanding on the
nature of relational views, and their roles in data warehousing environment. In
addition, these forms help us to deal with various issues related to processing
of views, which involves view scanning and maintenance (usually through
incremental update). For example, view scanning in the pure program view
form is typically the same as re-execution of the query that created view and is
no performance benefit for non-materialized views. Incremental update of
materialized views can be done in either real-time during the query execution
(along with scanning) or can be done at times other than scanning.

11.4.2.3 Materialized views and data warehousing
A data warehouse can be defined as a collection of materialized views

derived from data that may not reside at the warehouse. It is a redundant
collection of data replicated from several possibly distributed and loosely
coupled source databases, organized to answer OLAP queries. One can view
the problem of data warehousing as the problem of maintaining, in the
warehouse, a materialized view or views of the relevant data stored in the
original information sources. Challenges in exploiting materialized views
include:

• identify which views should be materialized;
• exploit the materialized views to answer queries;
• keep consistency of the warehouse data from multiple data

sources;
• efficiently update the materialized views during load and refresh;

predict the amount of storage for a specified precomputations
will require without actually performing the precomputation (or,
given a certain amount of storage, determine which aggregates
are best to precompute).

There are several important issues in regard to view management.
• View maintenance: A materialized view becomes dirty whenever the

underlying base relations are modified. The process of updating a
materialized view in response to changes to the underlying data is called
view maintenance.

• Incremental view maintenance: Algorithms that compute changes to a
view in response to changes to the base relations.

Discussion on materialized views and data warehousing can be found in
[Widom 1995].

11.4.2.4 Integrated data and knowledge management in data warehouses
Data warehouses provide an excellent environment for integrated data and

knowledge management [Baader, Jeusfeld and Nutt 1997; Borgida, Chaudhri,
and Staudt 1998]. Specific questions need to be answered for integration
including the following:

(1) The adequate languages to describe a user's information needs,
(2) Type of the reasoning needed,
(3) Background knowledge about application domain,
(4) Access views,
(5) Adequate representation and querying of meta-data,
(6) Dealing with incompleteness and other forms of uncertainty,
(7) Suitable formalisms to represent data quality, and more.

11.4.3 MAINTENANCE OF MATERIALIZED VIEWS
Due to the importance of view maintenance, we take a look at some recent

studies related to maintenance of materialized views.

• Maintaining the consistency of warehouse data: A data warehouse is a
repository containing integrated information for efficient querying and
analysis. Data warehouse maintenance requires maintaining the
consistency of warehouse data. Data sources are autonomous, views of
the data at the warehouse may span multiple sources, and multiple
updates may occur at one or more sources. [Zhuge, Garcia-Molina and
Wiener 1998] discussed this problem, and presented the Strobe family of
algorithms.

• View self-maintenance: Warehouse views need to be maintained in
response to changes to the base data in the sources. In data warehousing
environments where maintenance is performed locally at the warehouse,
an important incremental view maintenance issue is how to minimize
external base data access. [Quass, Gupta, Mumick and Widom 1996]
discusses the problem of view self-maintenance, where the views are
maintained without using all the base data. It is shown that by using key
and referential integrity constraints, one often can maintain a select-
project-join view when there are insertions, deletions, and updates to the
base relations without going to the data sources or replicating the base
relations in their entirety in the warehouse. [Huyn 1997] further discussed
this problem in the presence of multiple views.

• Maintenance of discovered rules: The issue of data mining in a data
warehousing environment will be discussed later in this chapter.
Nevertheless, here we can briefly point out that a further issue of view
maintenance is the maintenance of rules discovered using materialized
views. When the materialized views are updated, the discovered rules
should be updated as well. For example, in the task of maintaining
discovered association rules, support and confidence of the rules may
change, and a previously discovered rule may no longer be significant,
while some other rules may have their support and confidence improved.
[Cheung, Han, Ng and Wong 1996] discuss the issue of maintenance of
the discovered rules, which is concerned with the situation when the
database has been updated. Such updates may not only invalidate some
existing strong association rules but also turn some weak rules into strong
ones. An incremental updating technique is proposed to handle the case
when new transaction data are added.

11.4.4 NORMALIZATION AND DENORMALIZATION OF
MATERIALIZED VIEWS

11.4.4.1 Normalization versus denormalization
We now discuss the issue of what materialized views look like. The

traditional relational database design (as discussed in Chapter 4) has put
emphasis on normalization. However, data warehouse design cannot be
simply reduced to relational database design. In fact, frequently materialized
views involve join operation, and they are no longer in 3NF or BCNF (even
though the data sources are in these normal forms).

First, we want to comment on the pros and cons of normalized data from a
business perspective. In the business community, it is not uncommon for
people to feel that normalized designs are hard to comprehend; denormalized
designs tend to be more self-explanatory, even though denormalized tables
have longer records. Typical multi-attribute search-and-scan performance is
better on denormalized data because fewer tables are involved than in
normalized designs. Denormalization data provide an intuitive productive
environment for users who need to be trained or re-trained. On the other hand,
denormalization is the greatest cultural hurdle for most incremental data mart
design teams, because they are used to deal with OLTP. A result of
denormalization is the redundancy of data. For example, two relations along
with the joined result co-exist.

Another remark we want to make here is on the impact of ER modeling to
data warehouse design. There are two schools of thought in enterprise data
warehouse design. The ER normalized school [Inmen 1996] still starts from
the fundamentally normalized tables and then spawning off subset data marts
that are denormalized. In contrast, Ralph Kimball and his school [Kimball
1996] endorse a consistent, denormalized star schema environment across the
entire enterprise data warehouses.

11.4.4.2 Physical implementation of materialized views
So, what is the reality of implementation? At the physical level of a data

warehouse, data could be highly denormalized and heavily replicated across
the data warehouse and data mart systems.

On the other hand, further decomposition may be needed even for a
normalized relation: Suppose we have r (ABCD) with the functional
dependency F = A→ BCD. Apparently relation r is normalized (in which
normal form?) However, suppose attribute C is not frequently accessed, then
the relation may be further decomposed into r1(ABD) and r2(AC) so that the
two relations r1 and r2 will be maintained in different ways.

There is a need to deal with non-normalized data: A hierarchy may be use
in dimension tables, so dimension tables may not necessarily be normalized.
This will be more appropriate for browsing the dimensions. In fact,
dimensional tables are usually not normalized. The rationale is that a database
used for OLAP is static; update, insertion and deletion anomalies are not
important. Further, because the size of the database is dominated by the fact
table, the space saved by normalizing dimension tables is negligible.
Therefore, minimizing the computation time for combining facts in the fact
table with dimension information is the main design criterion, and the use of
denormalized dimension tables may avoid additional joins.

11.4.5 INDEXING TECHNIQUES FOR IMPLEMENTATION
Due to the close relationship between materialized views and indexing, here

we provide a brief examination on the issue of indexing. Traditional indexing
techniques (as briefly mentioned in Chapter 4) can be used, but there are also
additional issues which are unique in a data warehousing environment.

The mostly-read environment of OLAP systems makes the CPU overhead
of maintaining indices negligible, and the requirement of interactive response
times for queries over very large datasets makes the availability of suitable
indices very important.

Bitmap index: The idea is to record values for sparse columns as a
sequence of bits, one for each possible value. For example, the
biological gender of a customer (male or female) can be represented
using bitmap index. This method supports efficient index operations
such as union and intersection; more efficient than hash index and
tree index.
Join index: This method is used to speed up specific join queries. A
join index maintains the relationships between a foreign key with its
matching primary keys. The specialized nature of star schemas makes
join indices especially attractive for decision support.

We use the following example (taken from [Widom 1995]) to illustrate the
join index. Let us consider the two relations "Sale" and "Product" shown in
Table 11.5(a) and (b).

Table 11.5 (a) The sale table
Rid Prod-id Store-id date amount
R1
R2
R3
R4
R5
R6

P1
P2
P1
P2
P1
P1

C1
C1
C3
C2
C1
C2

1
1
1
1
2
2

12
11
50
8
44
4

Table 11.5 (b) The product table
id name price
P1
P2

Bolt
nut

10
5

If we perform join on sale.prod-id = prod-id, and precompute the result, we
can obtain the join index as shown in Table 11.6.

Table 11.6 Example of join index
Product.id Sale.prod-id
P1
P2

R1, R3, R5, R6
R2, R4

 In addition, we can give the following two remarks.
Relationship between join index and materialized views. If we do not use join
index, we can compute the join of two relations "sale" and "product", and
store the result. In this case, we have a materialized view shown below, which
has the same effect of using join index (namely, avoid recomputation). The
result is shown in Table 11.7 (columns are re-ordered for clarity.) Notice that
the result of join is usually a denormalized relation.

Table 11.7 A materialized view
Rid Prod-id name price Store-id date amount
R1
R2
R3
R4
R5
R6

P1
P2
P1
P2
P1
P1

Bolt
Nut
Bolt
Nut
Bolt
Bolt

10
5
10
5
10
10

C1
C1
C3
C2
C1
C2

1
1
1
1
2
2

12
11
50
8
44
4

Combining join index and bitmap index. Suppose we have very few products
to consider, then the bitmap can be used for products. (This is a very
important condition to check. It is not appropriate if there are many products.)
The join index table after bitmap technique is incorporated is shown in Table
11.8.

Table 11.8 Combined join/bitmap indexing
P1 P2 Sale.prod-id
1
0

0
1

R1, R3, R5, R6
R2, R4

Indexing is important to materialized views for two reasons: Indexes for a
materialized view reduce the cost of computation to execute an operation
(analogous to the use of an index on the key of a relation to decrease the time
needed to locate a specified tuple); indexing reduces the cost of maintenance
of the materialized views. One important problem in data warehousing is the
maintenance of materialized views due to changes made in the source data.
Maintenance of materialized views can be a very time consuming process.
There need to be some methods developed to reduce this time (one method is
use of supporting views and/or the meterializing of indexes).

11.5 REMARKS ON PHYSICAL DESIGN OF DATA
WAREHOUSES

Although the goal of this book is not on physical data warehouse design, it
is still important for us to understand some basics of this process. An excellent
overview on this issue can be found in [Labio, Quass and Adelberg 1997].
Another discussion with focus on distributed and parallel computing issues in
data warehousing can be found in [Garcia-Molina, Labio, Wiener and Zhuge
1999]. In the remaining part of this short section, we give a brief example to
illustrate how basic computational intelligence techniques can be applied to
physical data warehouse design process.

The problem considered here is that a data warehouse is often kept only
loosely consistent with the sources, because it is periodically refreshed with
changes sent from the source. When this happens, the warehouse is taken off-
line until the local relations and materialized views can be updated. An
important issue is how to select the sets of supporting views and of indexes to
materialize so that the down time can be minimized. This problem is referred
to as the view index selection (VIS) problem. As described in [Labio, Quass

and Adelberg 1997], an algorithm takes as input the set of all possible views
and indexes to materialize, M. M does not include the base relations B nor the
primary view V but includes indexes that can be defined on them. (V and B
are constrained to be materialized.) The goal of the algorithm is to choose a
subset M' of M to materialize such that the total cost C is minimized. The
solution is built incrementally using the A* search (see Chapter 2 for a
discussion). It begins with an empty materialization set (M' = ∅) and then
considers adding single views or indexes. The intermediate steps reached in
the algorithm were referred to as partial states. The exact cost of the best
solution given a partial state can be decomposed as C = g + h, where g is the
maintenance cost for the features chosen so far and h is the maintenance cost
for the features in M'u (which is the unconsidered features that would be
chosen). A partial order < is imposed upon M such that if a feature m1 can be
used in a query plan for propagating insertions to view m2, then m1 < m2 (so in
this section < does not represent the conventional meaning less than). Also,
for an index m1 on a view m2, we have m2 < m1.,

11.6 SEMANTIC DIFFERENCES BETWEEN DATA
MINING AND OLAP

Although both OLAP and data mining deal with analysis of data, the focus
and methodology are quite different. In this section, we provide a much-
needed discussion on this issue and use several examples to illustrate these
differences. We point out the difference of data mining carried out at different
levels, including how different types of queries can be handled, how different
semantics of knowledge can be discovered at different levels, as well as how
different heuristics may be used.

11.6.1 DIFFERENT TYPES OF QUERIES CAN BE ANSWERED AT
DIFFERENT LEVELS

We first point out that different kinds of analysis can be carried out at
different levels: What are the features of products purchased along with
promotional items? The answer for this query could be association rule(s) at
the granularity level, because we need to analyze actual purchase data for each
transaction which is involved in promotional items (we assume information
about promotional items can be found in product price).
• What kinds of products are most profitable? This query involves

aggregation, and can be answered by OLAP alone.
• What kinds of customers bought the most profitable products? This query

can be answered by different ways. One way is to analyze individual
transactions and obtain association rules between products and customers
at the granularity level. An alternative way is to select all most profitable
products, project the whole set of customers who purchased these
products, and then find out the characteristics of these customers. In this
case we are trying to answer the query by discovering characteristic rules

at an aggregation level. (For example, customers can be characterized by
their addresses.)

11.6.2 AGGREGATION SEMANTICS
The above discussion further suggests that data mining at different levels

may have different semantics. Since most people are familiar with semantics
of knowledge discovered at the granularity level, here we will provide a
discussion emphasizing what kind of difference is made by the semantics of
knowledge discovered at aggregation levels (which will be referred to as
aggregation semantics).

11.6.2.1 Aggregation semantics for classification rules
Take a look at a simple sales table shown in Table 11.9(a). In order to

obtain rules to characterize what kinds of products are profitable, we may first
map the value of profit to a Boolean function Yes or No. (Of course we may
also use a more sophisticated multiple classification; eg. profit 10000 < profit
< 20000 will be classified as "low" profit).

Table 11.9(a) A simple sales table
RID Quarter Product Product Color Quantity Profit

1 1st Hat Red 62 -100

2 1st Scarf Blue 125 300

3 1st Glove Blue 270 1000

4 2nd Hat Red 116 100

5 2nd Scarf Blue 34 -200

6 2nd Glove Red 52 -100

7 3rd Hat Blue 10 -400

8 3rd Scarf Red 37 -300

9 3rd Glove Blue 48 -200

10 4th Hat Red 412 6000

11 4th Scarf Blue 206 200

12 4th Glove Blue 149 300

Classification rules can be discovered at the granularity level as usual. For
example, we may have the following rule [Parsaye 1997]:

 Rule 1:
 If ProdColor = Blue
 then Profitable = No
 with confidence 0.75

Alternatively, we may apply aggregate functions on each particular kind of
product, and then at aggregation level, there is only one result (tuple) per each
particular aggregation, so confidence will no longer make any sense. For
example, if we apply the aggregation operations as supported by DATA
CUBE operator [Gray, Bosworth, Layman and Pirahesh 1996], we will get the
following summary data as shown in Table 11.9(b):

Table 11.9(b): A summary sales table
Quarter Product Product Color Quantity Profit

ALL ALL Blue ALL 640

… …. … … …

The following rule can be obtained:
Rule 1':
 If ProdColor = Blue
 then Profitable = Yes

Note that Rule 1 and Rule 1' are contradictory to each other. There is an
inconsistency of knowledge discovered at the aggregation levels and at the
granularity level. This is just an example of "anomalies" which may occur for
data mining involving aggregation: Knowledge discovered at the granularity
level may not (and usually not) be able to correctly derive results obtained at
aggregation level. Since knowledge discovered at different levels have
different semantics, there is no general answer to the question of "which one is
correct" when a kind of inconsistency exists.

11.6.2.2 Aggregation semantics for association rules
Do association rules still make sense at aggregation levels? May be, but

with different semantics. Consider the summary table in Table 11.10.

Table 11.10 A summary table
Year Month Sum

(OrderID)
Sum

(Milk)
Sum

(Bread)
Sum

(Cigarette)
Sum

(Beer)
1998
1998

01
07

18000
21000

7000
8500

8000
9200

900
1700

1000
5000

The primary key at the granularity level (OrderId) disappeared. We may be
interested in how the sales data are related to the new primary key (year and
month). Although at the granularity level TID serves only the purpose of the
identifier (i.e., surrogate), the primary key in the summary table may bear
more meaning, and may be used for explanation purposes. For example, the
sale of beer is much higher in July than in January, because there were more
outdoor social events in July than in January due to the weather.

The association between the sum of milk and the sum of bread is now
examined in the orders involved in whole month, not in each individual orders
(namely, transactions). Therefore, in an extreme case, 7000 orders of milk
may be from the same 8000 transactions which ordered bread, while in
another extreme case, the purchase of milk and bread may be from completely
disjoint 15000 transactions.

But this is not to say that association rules will not make any sense at
aggregation levels. The summary data obtained from different states may
reveal some connections of attributes which can only be found at the
aggregation level of the state. For example, we may have the following
(hypocritical) rule discovered:

Rule 2. States which have high amount of sales in milk and eggs are
likely to have high amount of cheese sales in Winter.

Note that what this rule said is different from saying that the same customer
who purchased milk and eggs is likely to purchase cheese in Winter.
Therefore, association rules have different semantics between granularity and
aggregation levels.

11.6.2.3 Sensitivity analysis
Related to the issue of inconsistency discussed above is the need for

carrying out a kind of sensitivity analysis for knowledge discovered at
aggregation levels. In fact, the change of a single value at the granularity level
may significantly change the rules discovered at aggregation levels. Suppose
we change the profit of RID 2 from 700 to 10; the overall evaluation for blue
products will be changed significantly. Rule 1 remains true, if we can tolerate
confidence at a lowered level (0.50). However, since the total profit as in
Table 1 is now changed to -50, Rule 1' is no longer true. One well-known
lesson learned from this kind of example is to keep the numerical data as long
as possible (namely, defer the mapping from numerical data to classifications)
[Parsaye 1997]. However, the problem of how to determine the change of the
numerical data will affect the resulting classification is an issue yet to be
studied.

11.6.2.4 Different assumptions or heuristics may be needed at different
levels

Assumptions and heuristics are frequently needed to make the data mining
process more effective. For example, in order to discover rules characterizing
graduate students at the granularity level, the names of students can be
dropped. Assumptions and heuristics are also important for data mining at
aggregation levels, but they may be quite different from those at the
granularity level.

Consider association rules at aggregation levels. We may compute the rate
(percentage) of total orders for one product over some other products in each
month. The following heuristic may be used:

If for two products, the rate of orders is relatively stable over time, it
may imply some kind of association between them; on the other
hand, if the rate highly fluctuates, it may indicate little or no
association between two products.

For example, applying this heuristic to Table 11.10, we may find out that
the total purchase of milk and total sale of bread is associated more closely
than the total purchase of milk and total purchase of beer, because the total
orders of milk changed very little from January to July (7000 to 8000), which
is not proportional to the change of total orders for beer (from 1000 to 5000).

11.7 NONMONOTONIC REASONING IN DATA
WAREHOUSING ENVIRONMENT

Basic concepts of computational intelligence as discussed in early chapters
of this book play an important role in decision making in data warehousing
environments. As a brief remark, in this section we revisit the concept of
nonmonotonic reasoning in data warehousing environments. Roughly
speaking, nonmonotonic reasoning refers to the withdrawal of previous
conclusions when new knowledge has been acquired. Nonmonotonic
reasoning is an important mechanism of uncertain reasoning. As mentioned in
Chapter 3, when probabilistic reasoning (and not just the axiomatic basis of
probability theory) has been fully formalized, it will be formally
nonmonotonic [McCarthy 1980].

We continue our discussion on integrated OLAP and data mining in the last
section, but this time from the perspective of nonmonotonic reasoning. Recall
that the granularity level and the aggregation level are different concept levels
for mining rules over multiple dimensions. Data at the granularity level are
detailed elements and served as base data, while data at the aggregation level
are summary data. Knowledge discovered at these levels may have different
semantics, and the semantics may be inconsistent with each other. When we
roll-up from the granularity level to an aggregating level, the conclusion made
at the granularity level may have to be withdrawn. Similarly, when we drill-
down from an aggregating level to the granularity level, the conclusion made
at the aggregating level may have to be withdrawn. Obviously, reasoning at
these levels has to be nonmonotonic.

The examples given in the previous section are quite simple. Nevertheless,
they reveal the nonmonotonic nature of reasoning involved in integrated
OLAP and data mining: When we drill down or roll up, the conclusion we
made at the previous level may have to be withdrawn. It is important to realize
that rules mined at different levels have different semantics, and these rules
are not isolated to each other. Understanding the nonmonotonic nature of
reasoning from one level to another level (such as moving from the
granularity level to an aggregating level, and vice versa) is important for us to
establish a comprehensive picture of data analysis, and thus has a great
business value.

In summary, a methodology should be developed to analyze summary data
guided by nonmonotonic reasoning. Although previous studies in
nonmonotonic reasoning have taken a logic-based approach, this current study
should focus on pragmatics so that knowledge workers will be able to use this
methodology. There are many issues that should be addressed by this
methodology, including the following:
(1) A set of guidelines involving the infrastructure of the data mining

process. Knowledge workers should carefully study the semantics and the
schema of the data to be analyzed, understand various issues such as what
kind of knowledge is needed by their organizations, which factors they

should look at, which existing tools are available, as well as other related
aspects. This kind of knowledge will guide the direction of nonmonotonic
reasoning.

(2) A method for preparing summary data for nonmonotonic data mining. For
example, frequently numeric data need to be categorized into meaningful
groups so that summary data can be obtained and used for analysis.

(3) A method or a set of algorithms that can be used to actually carry out
nonmonotonic reasoning for data mining. The method or the algorithms
should identify the most effective directions to analyze the data, such as
roll up or drill down according to a specific set of attributes.

11.8 COMBINING DATA MINING AND OLAP

11.8.1 AN ARCHITECTURE COMBINING OLAP AND DATA MINING
The discussion of Section 11.6 leads to an integrated architecture for

combined OLAP/data mining in data warehousing environment as depicted in
Figure 11.3. This architecture is proposed in data warehousing environments.

Figure 11.3 Integrated OLAP and data mining

Interface for User Queries

On Line Data mining

Materialized Views/
Data cubes

SourceData

Data
Warehouse

Off Line Data mining

Meta
data

OLAP Engine

We focus on the different and complementary roles of OLAP and data
mining in the overall process of intelligent data analysis in data warehousing
environments; that is, how to put together different aspects of OLAP and data
mining. Note that at the center of this architecture are the materialized views
(with an emphasis of data cubes, which are a special form of materialized
views -- see Section 11.4.2.2 for a discussion on the multi-facet features of
materialized views).

11.8.2 SOME SPECIFIC ISSUES
Using the integrated architecture as a guideline, we now discuss three

specific issues related to combined OLAP/data mining. These three issues are:
how to use and reuse of intensional historical data, how benefit OLAP using
data mining, and how to enrich data mining using concepts related to OLAP.

11.8.2.1 On the use and reuse of intensional historical data
First, we provide some remarks on the use of reuse of discovered rules. In

many cases, the rules (or other forms of knowledge) discovered from previous
data are stored; they become intensional historical data and can be used or
reused. Here the term "intensional" is used in the same sense as in intensional
databases. Also note that the word "historical" refers to the knowledge
discovered from previous data. The discovered knowledge (i.e., the
intensional historical data) itself may or may not be time-sensitive. This
feature (or the absence of the feature) may affect how the intensional
historical data may be used or reused.

To use a previously discovered rule is to apply that rule directly. The
following are some examples to indicate how a previously discovered rule can
be used in the case of non time-sensitive data:
• Provide prediction. Suppose we have the following intensional historical

data available: "Rule 6. In September 1998, the number of orders for blue
products whose price marked x% down increased 1.5x% (10 < x < 20)."
If a user wants to know in September 1999, when the price of a blue
jacket is to be marked down 20%, how the number of orders will be
affected; using the above rule a predicted increase of 30% will be
provided to the user as a quick response.

• Offer suggestions. The above rule can also be used to guide users'
decision making. For example, Rule 6 can also be used to suggest users to
mark down the price for blue products if they want to have a significant
increase of orders.

• Perform inference. The above examples already indicated the use of
inference (for example, modus ponens was used in prediction).
Furthermore, the inference process can be carried out so that inference
chains can be constructed. Suppose from the combined historical and
current data, the following rule is discovered: "Rule 7. For whatever
product, the number of orders increased 15% or above will always bring
significant profit." Rule 6 and Rule 7 can be used together to infer that "If

we mark down the price for blue jacket in September 1999 by 12%, then
significant profit may be made." In addition, time-sensitive intensional
historical data can also be used for future data analysis and data mining,
as exemplified in the following case:

• Perform second order data mining. Generalization or other forms of
induction can be used to perform further data mining on intensional
historical data. For example, consider the summary table in Table 11.11
which was constructed from intensional historical data (i.e., each tuple is
a rule discovered from previous sales):

Table 11.11 Another summary table
year Product color Store size Profitable
1996
1997

…
1998

Blue
…Yellow

…
Yellow

Large
Small

…
Large

Low
High
…

Very high

In this summary table, we may perform further data mining on various
directions, such as the impact of the color or store size without
considering years, or the general trend of color or store size over years.
Since this kind of analysis is to perform data mining on the intensional
historical data, it will be referred to as the second-order data mining.
Second-order data mining provides an approach to derive rules at
aggregation levels .

• Reuse of a previously discovered rule differs from direct use of a rule in
that some adaptation or revision is needed before the discovered
knowledge can be used. Just like reuse of a piece of a previously
developed software component, reuse of a rule requires necessary
changes of some parameters. A kind of mapping may occur, which may
take the form of analogical reasoning. The result of reusing a rule may be
a derived candidate rule whose validity should be carefully checked. For
example, consider the following intensional historical data Rule 8, which
is an association rule with certain support and confidence: "Rule 8. In
states where there is a significant increase on the sale of sweet candies,
there is also a moderate increase on the sale of iced tea." An example of
reusing this rule may result in following a somewhat speculative rule:
"Rule 8'. For states where there is a significant increase on the sale of
salty peanuts, there may be a moderate increase on the sale of ginger-ale."
Rule 8' is produced by using the following analogy:
sweet solid food : mild sweet liquid :: salt solid food : mild salt liquid
Of course rules derived in this way should be validated carefully before
they can actually be used (sometimes revision may be necessary). Since
checking the validity of a candidate rule may incur less overhead than
deriving a new rule, reuse may be an interesting technique deserving
further exploration.

11.8.2.2 How data mining can benefit OLAP
In the following we outline several sample cases in which data mining may

benefit OLAP. A more detailed discussion can be found in [Chen 1999].

• Construction and maintenance of materialized views: Many data mining
techniques have already implicitly assumed the use of some basic
functions of OLAP techniques; for example, the materialized view
constructed from the star schema to be used for data mining. However,
OLAP alone cannot decide which attributes should be used to form the
schema of the view to be used for data mining. The feedback of data
mining can be used to identify most important attributes (that is, to
determine schema for constructing materialized views), as well as the
most important conditions for selecting the data to be included in the
materialized views. Data mining may also provide help to handle
indexing issues in evolving databases in data warehouse environment.

• Data mining guided aggregation for OLAP: In order to determine which
view should be materialized (precomputed), the common interests of ad
hoc queries from existing and potential users should be studied. Data
mining on historical data may also provide a kind of guide for
aggregation (namely, what to aggregate, and how to aggregate).

• Instructed construction of materialized views for data mining.
Furthermore, the need for data mining can instruct OLAP aggregation so
that various materialized views can be constructed which can be used to
discover rules at aggregation levels. By placing the group-by operator at
different attributes, various materialized views can be constructed for
data mining at aggregation levels or at mixed granularity-aggregation
levels. In general, knowledge discovered earlier can always provide
refined instructions for the construction of materialized views.

11.8.2.3 OLAP-enriched data mining
There is another direction of connection between OLAP and data mining,

namely, OLAP can benefit data mining. We use drill-down data mining as an
example to illustrate how OLAP may provide a useful guide for data mining.
First we note that summary data shows the general picture but lack of detail.
For example, during a certain period, the sale of milk in Nebraska increased
10% while during the same period, the sale of milk dropped 5% in
neighboring Iowa. This could be due to several reasons. If we know during the
same period, the sales of all kinds of goods had dropped in Iowa but increased
in Nebraska, then we may not need to pursue further analysis. On the other
hand, if no convincing explanation exists, then we may have to perform some
kind of data mining. In this case, the data mining process is drill-down in
nature, because we should examine several dimensions in more detail.

We illustrate how the OLAP-related concerns can enrich the study of data
mining by studying a variation of association patterns. This study addresses
some concerns related to aggregation semantics as discussed in Section 11.6.2.
Given a transaction database, where each transaction is a set of items, an
association rule is an expression of the form X → Y, where X and Y are sets of
items. However, association patterns may be limited to basket data. For
instance, in a sales database, the query "how does product color affect

profits?" promotes "color" and "profit" to be the objects of analysis. The data
domain of color or profit is not the same as of basket items, such as hat or
glove. Moreover, the association between color and profit (which is a numeric
measure) suggests a new type of pattern -- an influence pattern, which has not
been covered by conventional association rules. The major purpose of
influence patterns is to describe the influences of one set of objects called
influencing factors on another set of objects called influence objects.
Algorithms have been proposed for discovery of influential association rules.
Moreover, when conflicts exist for rules discovered at granularity and
aggregation levels, a rule-refinement process is invoked to resolve the
conflicts. This refinement process resembles the drill-down operation of
OLAP. For example, when we consider the effect of product color alone to the
total sales, the rules obtained at the aggregation level may not agree with the
rules obtained at the granularity level. The refined process may drill-down to
some other dimension (such as the time dimension), and resolve the difference
by generating the following rule where two dimension attributes are involved:
 <Product Color, Red> => <Sales, High> with average value = 140,
 much of the Sales come from <Quarter, 4th> and <Product, Hat>.

A s et o f alg o rith ms fo r d is co ver y an d m aintenance o f in f lu en tial as s ociatio n
r ules h ave b een d ev elo ped and a pr oto ty pe s y stem has b een im plem ented . A
v er y br ief o u tlin e o f th e m ain alg or ith m fo r r ule d is co v er y is sh ow n b elo w.
The ter m in olo gy inv o lv ed in the algo r ithm s k eleto n as w ell as a m uch m or e
d etailed d is cus sion of th is app r oach can be fo un d in [Ch en , Chen an d Zhu
1 99 9] .
Algorithm Influence analysis

Input: A relational view that contains a set of records and the questions for
influence analysis.

Output: An influential association rule

 Method:
(1) Specify the dimension attribute and the measure attribute.
(2) Identify the dimension item sets and calculate support counts.
(3) Identify the measure item sets and calculate support counts.
(4) Construct sets of candidate rules, compute the confidence and
aggregate value.
(5) Form a rule at the granularity level with greatest confidence, and
form a rule at the aggregation level with largest abstract value of the
measure attribute.
(6) Compare the assertions at different levels, exit if comparable (i.e.,
there is no inconsistency found in semantics at different levels).
(7) For the case where the discovered rules are not comparable,
derive the refined measure item set and the framework of the rule.
(8) If the value of the measure consists of both negative and positive
values, form a rule indicating the summary value; otherwise, form a
rule concerning average value.
 (9) Construct the final rule.

11.9 CONCEPTUAL QUERY ANSWERING IN DATA
WAREHOUSES

11.9.1 MATERIALIZED VIEWS AND INTENSIONAL ANSWERING
We discussed conceptual query answering and intensional answers in

Chapter 9. In order to understand the role of intensional answers for
conceptual query answering, it would be advantageous to briefly examine how
materialized views may be used for intensional query answering in data
warehousing environments. Intensional answers resemble materialized views
in that, as discovered rules, they are stored for future use. Intensional answers
are much smaller in size (usually one or few tuples per rule) than
"conventional" materialized views. However, since both intensional answers
and their extensional parts may be requested by users' conceptual queries, the
extensional parts of the answers may also be stored. In general, when concept
hierarchies are used, answers in layers can be organized according to their
level of detail, and present to the user only the most general answers [Pirotte
and Roelants 1989]. If the user rejects an answer, it will be used in the
generation of additional, more specific answers; when the user approves an
answer, the particular avenue will not be pursued any further. This kind of
consideration justifies the choice of storing extensional answers along with
intensional answers. When extensional answers are stored with intensional
answers, we have materialized intensional answers. For instance, consider the
"excellent" student example in Chapter 9 (Section 9.3.4.1). If the actual tuples
for excellent students are stored along with the discovered rule, we have the
materialized intensional answer for "excellent" students.

The advantage of using materialized intensional answers is same as using
materialized views, namely, for fast response. In order to take this advantage,
just like materialized views, several problems need to be dealt with for
materialized intensional answers. In the following we briefly consider two
problems:

(1) what to materialize;
(2) h ow to increm en tally m ain tain th es e m ater ialized view s and h o w

conceptual query answering can take advantage of incremental
maintenance.

The first question was already illustrated by the "excellent" students
example. As a little more sophisticated example, let us consider the following
rule (an intensional answer):

q :- b, c, d.
Several strategies exist to answer the query q. At one extreme is the lazy

approach, where no precomputation is performed. The other extreme is an
eager approach which performs join on b, c, d at the body of the rule and
stores the result (which is similar to what we have seen in the student
example). Between these two extremes are some mixed approaches, such as to
precompute the join of b and c and store the result or recompute the join of c
and d and store the result.

For the second question, we have the following observations. The idea of
incremental maintenance (similar to what is used for materialized views) has
been incorporated in the work of [Pirotte and Roelants 1989] for maintenance
of intensional answers. For example, the closure of the constraints is generated
a priori and stored. The checks for redundancy are not performed anew for
each new answer, but the outcome of the checking of an answer is used in the
checking of answers generated from it. In general, the problem of incremental
maintenance for materialized intensional answers has not been studied on its
own right. However, methods for incremental maintenance for materialized
views can be adopted for maintaining materialized intensional answers.

11.9.2 REWRITING CONCEPTUAL QUERY USING MATERIALIZED
VIEWS

We now turn to more general cases where conceptual queries need to be
rewritten so that materialized views can be used to answer queries. [Levy,
Mendelzon, Sagiv and Srivastava 1995] discussed issues related to answering
query using materialized views, including the problem of finding a rewriting
of a query that uses the (materialized) views, the problem of finding minimal
rewritings, and finding complete rewritings (i.e., rewriting that uses only the
views). Although their work does not consider conceptual queries, some
important methods and results may be extended to solve our problem. For
example, possible rewritings of a query can be obtained by considering
containment mappings form the bodies of the views to the body of the query
as introduced by [Levy, Mendelzon, Sagiv and Srivastava 1995], but here
containment mappings should incorporate concept hierarchy using the so-
called watermark technique as proposed in [Han, Fu and Ng 1994]. In a
multilevel database (MLDB), a database layer L is consistent on an attribute Ai

with a query q if the constants of attribute Ai in query q can absorb (i.e, level-
wise higher than) the concept(s) (level) of the attribute in the layer. The
watermark of a (non-join) attribute Ai for query q is the topmost database
layer which is consistent with the concept level of query constants/inquiries of
attribute Ai in query q .

Consider the following conceptual query Q and materialized intensional
answer V:
 Q: booming(Area,Profit) :- isa (Area, MSA),
 consists(MSA,WestCoast), produce(Area, ComputerProduct),
 totalSale(ComputerProduct, Profit).

The query asks for booming areas in the west coast which should be in
some MSA (Metropolitan Statistical Areas), producing computer products and
the total sale profit. Suppose we have a materialized view V for good sales in
Pacific states as shown below, where Region is a descendent of Area in a
concept hierarchy:
 V: goodSales(Region, PacificStates) :-

 isa(Region, MSA), consists(MSA, PacificStates),
 produce(Region, PCproduct).

Following the basic rewriting technique introduced in Example 2.2 of
[Levy, Mendelzon, Sagiv and Srivastava 1995] and combining with the
concept hierarchy, Q can be rewritten as Q' using V as shown below. Note that
Area has now absorbed Region, and this rewriting is thus not a straightforward
application of the basic technique as described in [Levy, Mendelzon, Sagiv
and Srivastava, 1995].

 Q': booming(Region,Profit) :-
goo dSales (Regio n, Wes tCoast), pro duce(Region,
ComputerProduct), totalProfit(ComputerProduct, Profit).

Suppose in the view goodSales , the join of isa and Consists materialized,
then it can be used directly to further compute Q'. On the other hand, if the
needed materialized view does not exist, then the query may need to be
rewritten into some other form.

In large data warehousing environments, it is often advantageous to provide
fast, approximate answers to queries based on summaries of the full data.
However, the difficulty of providing good approximate answers for join-
queries using only statistics (in particular, samples) from the base relations,
significantly limits the scope of the current approaches for approximate query
answering. [Acharya, Gibbons and Poosala 1999] proposed using join
synopses as an effective solution for this problem. Details of these approaches
will not be further discussed here.

11.10 WEB MINING

11.10.1 BASIC APPROACHES FOR WEB MINING
Web mining is a good example of an integrated use of various methods

discussed in this chapter. Recent work has shown that the analysis needs of
Web usage data have much in common with those of a data warehouse, and
hence OLAP techniques are quite applicable. In the following we briefly
examine this topic by following the presentation of [Cooley, Mobasher and
Srivastava 1997].

Web mining can be broadly defined as the discovery and analysis of useful
information from the World Wide Web. This broad definition on the one hand
describes the automatic search and retrieval of information and resources
available from millions of sites and on-line databases, i.e., Web content
mining, and on the other hand, the discovery and analysis of user access
patterns from one or more Web servers or on-line services, i.e., Web usage
mining.

In recent years these factors have prompted researchers to develop more
intelligent tools for information retrieval, such as intelligent Web agents, as
well as to extend database and data mining techniques to provide a higher
level of organization for semi-structured data available on the Web. In
Chapter 5 we have already described the basic architecture of Web search. In

the following we further summarize some efforts for Web mining conducted
in this basic architecture.
• Agent-Based Approach. The agent-based approach to Web mining

involves the development of sophisticated computational intelligence
systems that can act autonomously or semi-autonomously on behalf of a
particular user, to discover and organize Web-based information.
Generally, the agent-based Web mining systems can be placed into the
following three categories:

♦ Intelligent Search Agents;
♦ Information Filtering/Categorization; and
♦ Personalized Web Agents.

• Database Approach. The database approaches to Web mining have
generally focused on techniques for integrating and organizing the
heterogeneous and semi-structured data on the Web into more structured
and high-level collections of resources, such as in relational databases,
and using standard database querying mechanisms and data mining
techniques to access and analyze this information.
♦ Multilevel Databases. Several researchers have proposed a multilevel

database approach to organizing Web-based information. The main
idea behind these proposals is that the lowest level of the database
contains primitive semi-structured information stored in various Web
repositories, such as hypertext documents. At the higher level(s)
meta-data or generalizations are extracted from lower levels and
organized in structured collections such as relational or object-
oriented databases. A discussion on meta-database will be given in
Chapter 14.

♦ Web Query Systems. There have been many Web-base query systems
and languages developed recently that attempt to utilize standard
database query languages such as SQL, structural information about
Web documents, and even natural language processing for
accommodating the types of queries that are used in Web searches.
Some Web-based query systems are summarized in [Florescu, Levy
and Mendelzon 1998].

11.10.2 DISCOVERY TECHNIQUES ON WEB TRANSACTIONS
As already introduced earlier, web usage mining is the type of Web mining

activity that involves the automatic discovery of user access patterns from one
or more Web servers. Organizations often generate and collect large volumes
of data in their daily operations. Most of this information is usually generated
automatically by Web servers and collected in server access logs. Analyzing
such data can help these organizations to determine the lifetime value of
customers, cross marketing strategies across products, and effectiveness of
promotional campaigns, among other things. Analysis of server access logs
and user registration data can also provide valuable information on how to

better structure a Web site in order to create a more effective presence for the
organization.

Web usage mining employs many important ideas of basic data mining
techniques as summarized in [Chen, Han and Yu 1996]. There are several
types of access pattern mining that can be performed depending on the needs
of the analyst. Below we briefly discuss these types and illustrate them using
simple examples.
• Path analysis. Using path analysis may be able to discover that "50% of

new investors who accessed /fund-family/products/purchase.html did so
by starting at /fund-family, and proceeding through /fund-family/top-
performance, and /fund-family/products/minimum-investment.html."

• Association rule discovery. For example, using association rule discovery
techniques we can find correlations such as "20% of clients who accessed
/SuperStar.com/announcements/promotion-item.html, placed an online
order in /SuperStar.com/products/fancy-computer. "

• Sequential Patterns. The problem of discovering sequential patterns is to
find inter-transaction patterns such that the presence of a set of items is
followed by another item in the time-stamp ordered transaction set. By
analyzing this information, the Web mining system can determine
temporal relationships among data items such as "35% of clients who
placed an online order in /SuperStar/products/fancy-computer.html, also
placed an online order in /SuperStar/products/digitalTV within 30 days."

• Clustering and Classification. Discovering classification rules allows one
to develop a profile of items belonging to a particular group according to
their common attributes. For example, "50% of clients who placed an
online order in /SuperStar/products/fancy-computer, were in the 25-28
age group with income in high 5-digits." Clustering analysis allows one to
group together clients or data items that have similar characteristics.

After the patterns are discovered, the next task is the analysis of discovered
patterns. Web site administrators are extremely interested in questions like
"How are people using the site?", "Which pages are being accessed most
frequently?", etc. Techniques and tools for enabling the analysis of discovered
patterns are expected to draw upon a number of fields, including visualization
techniques, data warehousing and OLAP techniques, usability analysis as well
as data and knowledge querying. Given the large number of patterns that may
be mined, there is a need for a mechanism to specify the focus of the analysis.
A query mechanism will allow the user (usually, an analyst) to provide more
control over the discovery process by specifying various constraints. The user
may provide control by placing constraints on the database to restrict the
portion of the database to be mined for, or by querying the knowledge that has
been extracted by the mining process.

SUMMARY

In this chapter we discussed the data warehousing infrastructure for OLAP,
data mining and their integration. It is important to keep in mind that data
mining is not a phenomenon isolated from the functionality of the DBMS, and
data warehouses are just an extension of the basic structure of DBMS. Though
the emphasis of this chapter has been on DBMS aspects, we have also seen the
role of computational intelligence in the implementation of data warehouses,
as illustrated in the view index selection problem (Section 11.5). More
discussion related to data mining will continue in the next two chapters, where
different aspects of computational intelligence will be presented.

SELF-EXAMINATION QUESTIONS
1. Give an example of conceptual query answering involving aggregation

data (you may use the tables and examples available in this chapter). How
many different answers can be found? Can you compare these answers?

2. In the example discussed in Section 11.3.3.2, we described how roll-up
operations can be performed, but without a detailed discussion on drill-
down. Could you illustrate how a drill-down operation is performed on
the data set used in this example?

3. In Section 11.6.2, we discussed aggregation semantics, and in Section
11.8.3.3, we provided a skeleton of the influence analysis algorithm
which takes care of some concerns raised in Section 11.6.2. Note that in
Step 6 of the algorithm, we exit if no semantic inconsistency is found. Is
there any need to revise the algorithm so that Step 7 will be executed even
if there is no inconsistency found in Step 6? Justify your answer.

4. In Chapter 10 we discussed discovery of association rules. How is it that
the intensional historical data may aid the process of association rule
discovery? Give an example.

REFERENCES

Acharya, S., Gibbons, P. B. and Poosala, V., Join Synopses for
Approximate Query Answering, Proceedings SIGMOD 1999.
Baader, F., Jeusfeld, M. A. and Nutt, W., Intelligent access to
heterogeneous information sources: Report on the 4th workshop on knowledge
representation meets databases, SIGMOD Record, 26(4), pp. 44-48, 1997.
Borgida, A., Chaudhri, V. K. and Staudt, M., Report on the 5th workshop
on knowledge representation meets databases (KRDB'98), SIGMOD Record,
27(3), 10-15, 1998.

Chaudhuri, S., Data mining and database systems: Where is the intersection?
Data Engineering Bulletin, 21 (1), pp. 4-8, 1998.
Chaudhuri, S. and Dayal, U., An Overview of Data Warehousing and OLAP
Technology, SIGMOD Record, 26(1), 65-74, 1997.
Chen, M. -S., Han, J., and Yu, P. S., Data Mining: An Overview from a
Database Perspective, IEEE transactions on knowledge and data engineering,
8(6), 866-897, 1996.
Chen, X., Chen, Z. and Zhu, Q., From OLAP to data mining: An analytical
influential association approach, Journal of Information Management and
Computer Science, 1999 (to appear).
Chen, Z., An integrated architecutre for OLAP and data mining, pp. 114-136
in M. Bramer (ed.), Knowledge Discovery and Data Mining: Theory and
Practice, 1999.
Cheung, D. W., Han, J., Ng, V. T. and Wong, C. Y., Maintenance of
discovered association rules in large databases: An incremental updating
technique, Proceedings ICDE '96, 1996.
Cooley, R., Mobasher, B. and Srivastava, J., Web Mining: Information and
Pattern Discovery on the World Wide Web. 1997. Document is available at
the following URL:
http://www-users.cs.umn.edu/~mobasher/webminer/survey/survey.html.
Florescu, D., Levy, A. and Mendelzon, A., Database techniques for the
World-Wide Web: A survey, SIGMOD Record, 27(3), 59-74, Sept. 1998.
Forsman, S., OLAP Council white paper, 1997, available at
http://www.pin.co.za/software/miniolap/faq/olap.htm.
Garcia-Molina, H., Labio, W. J., Wiener, J. L. and Zhuge, Y., Distributed
and parallel computing issues in data warehousing (invited talk), Proceedings
ACM Principles of Distributed Computing Conference, 1999.
Gray, J., Bosworth, A., Layman, A. and Pirahesh, H., Data cube: A
relational aggregation operator generalizing group-by, cross-tab, and sub-
totals, Proceedings Of International Conference on Data Engineering (ICDE
96), 1996.
Hammer, J., Garcia-Molina, H., Widom, J., Labio, W. J., and Zhuge, Y.,
The Stanford Data Warehousing Project, Data Engineering Bulletin, 18(2),
41-48, 1995.
Han, J., Towards On-Line Analytical Mining in large databases, SIGMOD
Record, 27(1), 97-107, 1998.
Han, J., Fu, Y., and Ng, R., Cooperative query answering using multiple
layered databases, Proceedings 2nd International Conference on Cooperative
Information Systems, 47-58, 1994.
Huyn, N., Multiple-view self-maintenance in data warehousing environments,
Proceedings 23rd VLDB Conference, 1997.
Imielinski, T. and Mannila, H., A Database Perspective on Knowledge
Discovery, Communications of the ACM, 39(11), 58-65, 1996.
Inmon,W. H., Building the Data Warehous,. John Wiley, New York, 1996.
Kimball, R., The Data Warehouse Toolkit, Wiley, New York, 1996.

http://www-users.cs.umn.edu/~mobasher/webminer/survey/survey.html
http://www.pin.co.za/software/miniolap/faq/olap.htm

Labio, W. J., Quass, D. and Adelberg, B., Physical database design for data
warehousing, in Proceedings of the International Conference on Data
Engineering, 1997.
Levy, A. Y., Mendelzon, A. O., Sagiv Y. and Srivastava, D., Answering
queries using views, Proceedings PODS, 95-104, 1995.
McCarthy, J., Circumscription - A form of nonmonotonic reasoning,
Artificial Intelligence, 13 (1 & 2), 1980.
Parsaye, K., OLAP & data mining: Bridging the gap, Database Programming
& Design, 10(2), 30-37, 1997.
Pirotte, A. and Roelants, D., Constraints for improving the generation of
intensional answers in a deductive database, Proceedings 5th Data Eng. 652-
659, 1989.
Quass, D., Gupta, A., Mumick, I. and Widom, J., Making views self-
maintainable for data warehousing, Proc. of the Conference on Parallel and
Distributed Information Systems, 1996.
Ramakrishnam, R., Database Management Systems, WCB McGraw-Hill,
Boston, 1998.
Roussopoulos, N., Materialized views and data warehouses, SIG MOD
Record, 27(1), 21-25, 1998.
Srivastava, J., and Chen, P.-Y., Warehouse creation -- a potential roadblock
to data warehousing, IEEE Transactions on Knowledge and Data Engineering,
11(1), 118-126, 1999.
Widom, J. (ed.), Special issue on materialized views and data warehousing,
Data Engineering Bulletin, 18(2), 3-48, 1995.
Zhuge, Y., Garcia-Molina, H. and Wiener, J. L., Consistency algorithms
for multi-source warehouse view maintenance, Journal of Distributed and
Parallel Databases, 6(1), 7-40, 1998.

Chapter 12

REASONING UNDER UNCERTAINTY

12.1 OVERVIEW
In Chapter 1, we described the relationship among data, information and

knowledge (as indicated in Figure 1.1). At that time, we did not focus on the
role of uncertainty in this overall picture (although we did briefly mention the
existence of noise). Now it is time for us to deal with this issue. From a
business perspective, we can view information as that which resolves
uncertainty, and decision making is the progressive resolution of uncertainty
and is a key to a purposeful behavior by any mechanism (or organism)
[Berson and Smith 1998].

Uncertainty is everywhere in our daily life. We are used to see fluctuations
in stock markets. There are a lot of words in our daily language concerning
uncertainty, such as "probably," "more or less," as well as others. An
intelligent agent should demonstrate an ability to perform reasoning and
support decision making under uncertainty. The discussion on reasoning under
uncertainty is deferred until now, mainly due to pedagogical concerns. One
concern is that since search and representation have been the main theme of
symbolic computational intelligence, the discussion made so far has been
largely around these two topics. Uncertain reasoning (or reasoning under
uncertainty), due to the subject nature, requires some methods of its own, and
is better to be discussed at a later time. The second reason of postponing the
discussion of uncertain reasoning is due to the following concern. As already
briefly mentioned in Chapter 10, uncertain reasoning is related to machine
learning (and data mining). Since machine learning is more directly related to
search and representation, it is better to discuss machine learning and related
materials first. Now that we have discussed machine learning, it is time to
discuss uncertain reasoning. In a sense we expand our discussion made in the
last chapter to intelligent data analysis in a broader sense. We will first discuss
approaches based on probability theory, including Bayesian networks. The
second half of this chapter is mainly devoted to uncertain reasoning using
fuzzy set theory. Reasoning based on probability and reasoning based on
fuzzy logic are the two most popular approaches used in uncertainty
reasoning. Note that due to space limitation and the wide availability of
uncertain reasoning literature, our purpose is to introduce some key ideas only
so that we can present an integrated perspective of uncertain reasoning.
Having learned basic ideas of these approaches from this chapter, interested
readers can dig into more technical details by following the references
provided at the end of this chapter. Based on the same consideration, in the

next chapter we will continue to present key ideas of some other approaches in
uncertain reasoning.

12.2 GENERAL REMARKS ON UNCERTAIN
REASONING

12.2.1 LOGIC AND UNCERTAINTY

As to be explained in a later section, there are several different forms of
uncertainty. One important form is randomness: If you toss a coin, the chance
of seeing head or tail is about half-half. Probability theory (to be outlined in
the next section) has been developed for dealing with uncertainty. We now use
probability reasoning as an example to illustrate the difference between logic
and uncertainty. Probabilistic reasoning systems have several important
properties different from logical reasoning systems [Russell and Norvig
1995]:
• Nonmonontonicity. As indicated by McCarthy in the earlier age of

nonmonotonic reasoning, when probabilistic reasoning (and not just the
axiomatic basis of probability theory) has been fully formalized, it will be
formally nonmonotonic [McCarthy 1980]. As briefly discussed in Section
3.5, first order predicate logic exhibits strict monotonicity, although
commonsense reasoning exhibits nonmonotonicity. In contrast, in a
probability reasoning system we can add or withdraw beliefs, which
makes it nonmonotonic.

• Non-locality. In logical systems, when we have a rule of the form A → B,
we can conclude B given evidence A, without worrying about any other
rules. In contrast, probabilistic systems demonstrate a global feature,
because we need to consider all of the available evidences.

• Non-detachment. In dealing with probabilities, the source of the evidence
for a belief is important for subsequent reasoning. In contrast, in a logical
system, when we have a rule of the form A → B, once a logical proof is
found for a proposition B, the proposition can be used regardless of how it
was derived; in this sense, it is detached from its justification.

• Non-additive: In general, probability combination is a complex process,
except under strong independence assumptions. This is quite different
from logic, where the truth of complex sentences can be computed from
the truth of the components.

Both first order predicate logic and uncertain reasoning are concerned with
reasoning properly, but unlike first-order logic, where proper reasoning means
that conclusions follow from premises, in probability, we are dealing with
beliefs, not with the state of the world.

Note that the above discussion is concerned with one particular form of
reasoning under uncertainty: probability reasoning. As we are going to discuss
in Section 12.2.2, there are different types of uncertain reasoning, and the
relationship between logic and uncertainly as discussed above may not hold

for other types of reasoning. Nevertheless, the above discussion revealed the
very different nature of reasoning using logic (without considering
uncertainty) and reasoning under uncertainty.

12.2.2 DIFFERENT TYPES OF UNCERTAINTY AND ONTOLOGIES
OF UNCERTAINTY

There are different kinds of uncertainty. Uncertainty may be caused due to
the reasoning mechanism (such as using abductive reasoning as briefly
discussed in Chapter 3), or due to the problems encountered by the data used,
such as missing, incomplete, or incorrect information. A discussion on this
topic leads us to the topic of ontological commitment. Recall that in Chapter 5
we discussed ontology as explicit, knowledge-based specifications of
conceptualizations. (Review Section 5.9.2 for more detail.) Randomness and
vagueness are two examples of different types of uncertainty. Different
theories have been developed to deal with different types of uncertainty; for
example, probability theory has been developed to deal with randomness
while fuzzy set theory is intended to deal with vagueness. In addition,
different approaches can be combined. In the following we follow [Russell
and Norvig 1995] to give a brief discussion on this issue. Though probability
theory has enjoyed a long history of extensive studies, due to the scaling-up
problem, probabilistic approaches fell out of favor from roughly 1975 to 1988,
and several alternatives have been proposed. Some of them are summarized
below.
• Extension of logical rule-based approaches: These approaches extend

logical rule-based systems by affiliating some numerical values to
accommodate uncertainty. These methods were developed in the 1970s.

• Extending probability theory: For example, the Dempster-Shafer theory
(see Section 12.3.6) uses interval-valued degrees of belief to represent an
agent's knowledge of the probability of a proposition. At the heart of this
approach is the notion of ignorance, which was not considered in classical
probability theory. Other methods using second-order probabilities were
also proposed.

• Qualitative judgmental reasoning: A more radical approach is to handle
the critical problem faced by probability theory: probability theory is
essentially quantitative, and does not match human judgmental reasoning
which is more qualitative. This approach is largely carried out under the
umbrella of default reasoning. Qualitative reasoning mechanisms can also
be built on the top of probability theory.

• Shifting ontology: Probability makes the same ontological commitment as
logic: that events are true or false in the world, even if the agent is
uncertain as to which is the case. Fuzzy set logic has marked a major shift
away from this tradition. In fact, fuzzy set theory proposed an ontology
that allows vagueness so that an event can be "somewhat" true. Fuzzy set
theory is a means of specifying how well an object satisfies a vague
description. For example, consider the statement "Tom is tall." What can

we say if Tom is 5'11"? A reasonable answer would be "a sort of." Note
that this is not a question of uncertainty about the external world; rather it
is a case of vagueness or uncertainty about the meaning of the linguistic
term "tall." Note also that the ontology behind fuzzy set theory is not
necessarily in conflict with the traditional one: Take, for example, a
statement concerning "nice weather." It involves vagueness on the term
"nice," but also involves probability concerning the chance of weather
being nice.

The ontological shift as mentioned above has turned out a very
controversial issue. From the perspective of computational intelligence as a
science, "most authors say that fuzzy set theory is not a method for uncertain
reasoning at all" [Russell and Norvig 1995]. Nevertheless, fuzzy set theory has
been proven very successful in engineering problem solving. Much of the
remaining part of this chapter will be devoted to uncertain reasoning using
probability and fuzzy set approaches.

12.2.3 UNCERTAINTY AND SEARCH

I n or der to b uild p r actical com p utation al in telligence s ys tem s, o ne has to
d eal with issues related to uncertainty and incomplete information. The search
methods for problem solving discussed in earlier chapters did not take
uncertainty into concern. However, searching with uncertainty is a reality in
all kinds of problem solving. Therefore, it is worth examining uncertain
reasoning from the classical perspective of search. Many related issues should
be addressed, including the following [AAAI 1999]:
• When the traditional search techniques can be appropriately applied;
• How uncertain and incomplete information can be exploited to control

search processes;
• Whether there is a difference in principle between reasoning with

deterministic and probabilistic representations of uncertain and
incomplete information (for example, comparison between constraint
networks or belief networks);

• How the level of uncertainty affects problem complexity;
• How different search paradigm (such as heuristic search and dynamic

programming) can be combined to provide additional pruning power;
• How the structure of search spaces can be exploited to speed up search;
• Search strategies that can be applied across domains and application

areas; and
• New search strategies.

Exploring these issues would give us a comprehensive view of reasoning
with or without considering uncertainty. However, due to space limitation, we
will only focus on practical aspects (rather than theoretical aspects) of
uncertain reasoning.

12.3 UNCERTAINTY BASED ON PROBABILITY
THEORY

Probability theory is a very important theory on its own. In this section, we
will only be able to sketch some of the most key ideas related to uncertain
reasoning.

12.3.1 BASICS OF PROBABILITY THEORY

The basic properties of probability theory can be described as follows. Let
A and B be two events (such as tossing a coin or running out of gas) and P be
the probability. The following are the basic properties of probability theory:
(i) If A ⊆ B then p(A) ≤ p(B).
(ii) P(¬A) = 1 - p(A).
(iii) P(A∪B) = p(A) + p(B) - p(A∩B).
Note that Property iii can be generalized to more than two events. In addition,
in case that A and B are independent events, property (iii) is simplified to
(iii') P(A∪B) = p(A) + p(B).

In general, the assumption of independence may largely simplify the
calculation related to probability. However, in many cases, independence
assumption is not realistic. Independence assumption is a major hurdle of
applying probability theory in some real-world assumptions.

Another basic concept is conditional probability. For example, P(A|B)
indicates the probability of A given B. For example,

P(brain tumor | headache) = 0.01
indicates that when headache occurs, the chance of having a brain tumor is
0.01. This is different from the following formula,

P(headache | brain tumor) = 0.2,
which indicates that when brain tumor presents, the chance of having a
headache is 0.3. These two formulas have different meanings, but they are
closely related. How to derive one from the other is an example of statistical
inference. We will briefly examine this issue in the next subsection. But
before that, we give some remarks on the nature of probability theory.

Probability theory can be defined as the study of how knowledge affects
belief. Belief in some proposition, f, can be measured in terms of a number
between 0 and 1. The probability f is 0 means that f is believed to be definitely
false (no new evidence will shift that belief), and a probability of 1 means that
f is believed to be definitely true. Statistics of what has happened in the past is
knowledge that be conditioned on and used to update belief [Poole,
Mackworth and Goebel 1998].

There are different interpretations of statements involving probabilities. In
the frequentist interpretation, a probability is a property of a set of similar
events. In subjective interpretation, a subjective probability is a probability
expressing a person's degree of belief in a proposition or the occurrence of an
event. In this text, we will stay with the latter [Dean, Allen and Aloimonos
1995]. We assume that the uncertainty is epistemological (pertaining to our

knowledge of the world) rather than ontological (how the world is). We
assume that our knowledge of the truth of propositions is uncertain, not that
there are degrees of truth.

Much reasoning in computational intelligence can be seen as evidential
reasoning, going from observations to a theory about what is inside the
system, followed by causal reasoning, going from a theory about the
mechanism of a system to predicting output of the system. Evidential
reasoning is also called diagnosis, while diseases or malfunctions are
hypothesized to explain symptoms. These diagnoses make predictions which
lead to tests being performed. Evidential reasoning can also be considered as
perception, where an agent hypothesizes what is in the world to account for
what is perceived by the agent. Based on its hypothesis about what is in the
world, the agent acts and then receives further percepts [Poole, Mackworth
and Goebel 1998].

12.3.2 BAYESIAN APPROACH

The conditional probability P(A|B) states the probability of event A given
that event B occurred. The inverse problem is to find the inverse probability
that states the probability of an earlier event given that a later one occurred.
This type of probability occurs very often. For example, in medical diagnosis
or various troubleshooting problems, we want to find most likely cause for
the observed symptoms. The solution for this problem is stated as Bayes'
theorem (or Bayes rule), which serves as the basis of a well-known approach
in probability theory called Bayesian approach.

Bayes' theorem: This theorem provides a way of computing the probability
of a hypothesis Hi, following from a particular piece of evidence, given only
the probabilities with which the evidence follows from actual causes
(hypotheses).

P(E|Hi) P(Hi)
P(Hi|E) =

Σk=1
n P(E | Hk) P(Hk)

where P(Hi|E) is the probability that Hi is true given evidence E; P(Hi) is the
probability that Hi is true overall; P(E|Hi) is the probability of observing
evidence E when Hi is true; n is the number of possible hypotheses. The
formula can be further simplified to

P(Hi | E) = P(E | Hi)× P(Hi) / P(E).
As a simple example, we can now get back to the issue of computing the
conditional probability involving headache and brain tumor. Suppose from
experience we have learned that P(Hi) = (headache) = 0.3, P(E) = P(brain
tumor) = 0.015, and P(brain tumor | headache) = 0.01. Then according to
Bayes' theorem we have

P(headache | brain tumor)
= P(brain tumor | headache) × P(headache) / P(brain tumor)

= 0.01 × 0.3 / 0.015 = 0.2.

Bayesian reasoning is based in formal probability theory. Bayesian theory
supports the calculation of more complex probabilities form previously known
results. The method of Bayesian decision making was used in an early expert
system called PROSPECTOR to decide favorable sites for mineral
exploration. Each model for PROSPECTOR is encoded as a network (called
"inference net") of connections or relations between evidence and hypotheses.

12.3.3 BAYESIAN NETWORKS

12.3.3.1 Assumptions
Bayesian networks (also called belief networks or causal networks) [Cooper

and Herskovits 1994] relax several constraints of the full Bayesian approach.
These networks are also referred to as causal networks. This approach takes
advantage of three assumptions:
(a) The modularity of a problem domain makes many of the

dependence/independence constraints required for Bayes approach be
relaxed.

(b) The links between the nodes of the belief network are represented by
conditioned probabilities. For example, the link between two nodes A and
B, denoted A → B(c), reflects evidence A's support for the belief in B
with confidence c, sometimes referred to as a causal influence measure.

(c) Coherent patterns of reasoning may be reflected as paths through
cause/symptom relationships. The cause/symptom relationships of the
problem domain will be reflected in a network. Paths within this network
represent the use of different possible arguments.

A directed acyclic graph can be used to reflect the argument path through
the cause/symptom network. Note that causes can influence the likelihood of
their symptoms and the presence of a symptom can affect the likelihood of all
its possible causes. To create a Bayesian belief network we must make a clear
distinction between these two kinds of potential influence, and then select the
path our reasoning will take through the network.

In the general case, exact inference in Bayesian networks is known to be
NP-hard (for a brief discussion on NP-hard, see [Weiss 1998]). This is
because a general belief network can represent any propositional logic
problems are known to be NP-complete [Russell and Norvig 1995].

12.3.3.2 Some key concepts in Bayesian networks
For convenience of discussion, we now describe some key concepts in

Bayesian belief networks. A random variable is a variable that can take on
values from a set of mutually exclusive and exhaustive values referred to as
the sample space of the random variable.

A probabilistic network employs an intuitive representation which can be
formalized to capture both qualitative and quantitative relationships. The
formal model will allow us to reason forward from causes to effects and
backward from effects to causes. The former is called predictive reasoning

while the latter is called diagnostic reasoning. We can gain additional insight
into probabilistic networks by re-characterizing independence relationships in
terms of paths through the underlying graph. We say that X is dependent on Y
given a set of variables S if and only if there exists some dependency-
connecting path from X to Y in G.

The notion of conditional independence can be used to give a concise
representation of mainly domains. The idea is that given a random variable v,
there may be a small set of variables that directly affect the variable's value in
the sense that every other variable is independent of v given values for the
directly affecting variables. This locality is exploited in Bayesian belief
networks. A Bayesian belief network is thus a graphical representation of
conditional independence. The independence allows us to depict direct effects
within the graph and prescribes which probabilities need to be specified.
Arbitrary posterior probabilities can be derived from the network.

Formally, a Bayesian network [Pearl 1991] is a directed acyclic graph
(DAG) with nodes labeled with random variables, together with a domain for
each random variable and a set of conditional probability tables for each
variable given its parents. These conditional probability tables include prior
probabilities for nodes with no parents. The independence assumption
embedded in a belief network is: Each random variable is independent of its
non-descendants given its parents [Poole, Mackworth and Goebel, 1998]. The
number of probabilities that needs to be specified for each variable is
exponential in the number of parents of variable. The independence
assumption is useful insofar as the number of variables that directly affect
another variable is small. As part of a Bayesian network, we provide a set of
conditional probability tables that gives the probability of each value of a
variable for each value of the variable's parents.

Bayesian networks have often been called causal networks, and claimed to
be a representation of causality. Although this is controversial, there is a good
motivation for this. A causal model in our mind is expected to obey the
independence assumption of the belief network. The model is also expected to
be acyclic. In general, a belief network itself has nothing to say about
causation, and it can represent non-causal independence, but it seems
particularly appropriate when there is causality and locality in a domain. The
notion of causality makes it very natural to build a belief network. The idea is
to determine what variables are relevant to the domain we want to represent,
and add arcs that represent the local causality [Poole, Mackworth and Goebel
1998].

Changes of probabilities are propagated in a Bayesian network. If some
values of a variable has been changed, we would expect that only the
variable's descendants would be affected. Causality in belief networks relates
to causal and evidential reasoning. A Bayesian belief network can be seen as a
way of axiomatizing in one direction, abducing to causes, and then predicting
from there.

Finally, let us get back to a remark on probabilistic theory and logic. A
direct mapping exists between the logic-based abductive view and belief

networks: Belief networks can be modeled as logic programs with
probabilities over possible hypotheses.

12.3.3.3 Constructing a Bayesian network
To represent a domain in a Bayesian network, various issues should be

considered as indicated below [Poole, Mackworth and Goebel 1998]:
• What are the relevant variables?
• What is the relationship between them? This should be expressed in terms

of local influence.
• What values should these variables take? This involves considering the

level of detail at which we want to reason.
How does the value of one variable depend on the variables that locally
influence it (its parents)? This is expressed in terms of the conditional
probability tables.

12.3.3.4 Implementing Bayesian networks
Approaches of implementing Bayesian networks can be divided into several

categories [Poole, Mackworth and Goebel 1998]. The problem of determining
posterior distributions (the problem of computing conditional probabilities
given the evidence) is one that has been widely researched. The problem of
estimating the posterior probability in a belief network within an absolute
error (of less than 0.5), or within a constant factor, is NP-hard, so general
efficient implementations will not be available.

Approaches for implementation of belief networks fall in three categories:
• Exploiting the structure of the network. This approach is typified by the

clique tree propagation method, where the network is transformed into a
tree with nodes labeled with sets of variables.

• Search based approaches. These approaches enumerate some of the
possible worlds, and estimate posterior probabilities from the worlds
generated. These approaches work well when the distributions are
extreme (all probabilities are close to either 0 or 1).

• Stochastic simulation. Random cases are generated according to the
probability distributions and are treated as a set of samples. These cases
are then used to estimate the marginal distribution on any combination of
variables.

Algorithms have been developed for the different conditions of Bayesian
networks [Dean, Allen and Aloimonos, 1995]:

• Exact inference in tree-structured networks which are networks in
which each node has at most one parent.

• Exact inference in singly connected networks which are networks in
which nodes have more than one parent, but there is exactly one
undirected path between any two nodes.

• Approximate inference using stochastic simulation in multiply
connected networks in which there are two or more undirected paths
between some nodes.

The belief network inference problem is the problem of computing the
posterior distribution of a variable given some evidence. The problem of
computing posterior probabilities can be reduced to the problem of computing
the probability of conjunctions. In real-world applications, this algorithm faces
the problem of how to speed up. This can be done by using preprocessing as
much as possible and by using a secondary structure to save intermediate
results so that evidence can be incrementally added and each variable's
probability can be derived after each addition of evidence. The algorithm can
be speeded up also by pruning the irrelevant nodes from the network before
the query starts. Roughly speaking, relevant nodes include the following: The
query node, ancestors of relevant nodes, and observed descendants of relevant
nodes. All other nodes are irrelevant. However, extensive preprocessing
would allow arbitrary sequences of observations and derive the posterior on
each variable, and thus preclude pruning the network. A kind of trade-off must
be made. Note that the philosophy of preprocessing can be compared with
constructing an abstract database in conceptual query answering as discussed
in Chapter 9 and Chapter 11. This provides another example of cross-domain
similarity.

12.3.3.5 The notion of d-separation
A detailed discussion on probability propagation in Bayesian networks is

beyond the scope of this book. Here we will only briefly introduce an
important property which shaped the recent studies of Bayesian network,
namely, d-separation. Two nodes (variables) A and B in a Bayesian belief or
qualitative probabilistic network are d-separated if for all paths between A and
B, there is an intermediate node (variable) V such that one of the following is
true:

(i) The connection is serial or diverging and the state of V is
known;

(ii) The connection is converging and neither V nor any of V 's
children have evidence.

The meaning of three connections mentioned above is illustrated in the
following figure which represents the relationships between subgraphs of a
Bayesian network. The directions of the arrows linking states indicate how
states can probabilistically influence each other.

(a) There is a possible serial relationship of A on B and B on C, with A →
B(c1) and B → C(c2), where c1 and c2 are the causal influence measures. If
there is no evidence supporting B then A and C are d-separated and
independent. If there is evidence of B then C cannot support A, but evidence
for B can still support A.

Figure 12.1 Cases of d-seperation

(b) The diverging connections B, C, …, E are not independent, because
there exists a single event A that can make them all true. If we do know that A
does not occur, then B, C, …, E are d-separated and independent.

(c) The converging connection occurs. If A is known to be true then B, C,
…, E are not independent; if A is unknown then B, C, …, E are d-separated
and independent.

The notion of d-separation is important in formalizing the evidence
propagation in a Bayesian belief network (namely, how the evidence for a
node in a belief network can affect an argument). For a more detailed
discussion on this issue, see [Neapolitan 1990; Pearl 1991].

12.3.4 BAYESIAN NETWORK APPROACH FOR DATA MINING

12.3.4.1 Introduction
As indicated in the first section of this chapter, machine learning and

uncertain reasoning are closely related. We have already explained how
Bayesian networks can be used for uncertain reasoning. In fact, they can be
u sed fo r d ata m in in g as w ell as [H eckerm an 19 9 7] . In th is sectio n , we stud y the
problems in control and attention of a knowledge discovery process, where
control is a process of activating information sources and attention is a process
of extracting knowledge patterns from the sources activated. Built upon the
use of a belief network structure, the goal-driven technique represents a
knowledge pattern in terms of a sequence of goals and sub-goals, and
moderates the control and attention processes under the guidance of domain
knowledge. The technique eases the burden of knowledge management and
reduces the complexity of the control and attention processes in knowledge
discovery.

 12.3.4.2 An agent-based model for data mining using Bayesian networks
A high-level agent-based model for data mining using Bayesian networks

have been developed in Figure 12.2, where G denotes the goal, B (or BN)
denotes the Bayesian network, A denotes the agents, D denotes the database,
and K denotes the knowledge discovered. In the following we provide a brief
discussion of this model. More details can be found in [Chen and Zhu 1998].

In this model, a knowledge pattern is defined as a construct consisting of
the goals, the relations among the goals, and the functions defined on them. A
causal network can be used to represent the knowledge patterns that are
explored at the initial, intermediate and final stages of a knowledge discovery
process.

(a) (b) A (c) B C D

 A B C B C D
 A

Figure 12.2 A data mining model

In a knowledge discovery process, new nodes and links associated with the
relevant data attributes in exploration could be added to the BN conveniently.
A structural analysis that traces the nodes and links of the whole or partial BN
identifies the dependency relations and the network structure to be updated.
The BN could thus serve as a control mechanism to guide the generation and
evaluation of the subsequent sub-goals, as well as a representation of the
intermediate and final knowledge patterns. In this sense, the belief network is
used as both a reasoning tool and a memory structure for the knowledge
applied and deducted.

A knowledge discovery process performed in the above model would start
from the construction of an initial BN that consists of the following:
(1) An ultimate goal, g0, which is the objective of a KDD process and serves

as the starting point of the BN construction;
(2) A set of sub-goals, {GI} that may have certain probabilistic or logic

dependencies (directly or indirectly) with g0; and
(3) A set of hypothetical inference rules {π[g0 | GI]} that may be defined in

terms of probability dependence functions on the connection between g0

and the sub-goals.

Figure 12.3 depicts an example of this initial BN. Note that the arrows
linking the nodes indicate the direction of probability propagation (for
example, from a child node to a parent node).

q0(x, p)

q1 (x, p’)

π[q0(x, p) | q1(x, p’)]

Initial BN

Figure 12.3 An initial Belief Network

Given an initial BN, variables of relevant objects that pertain to the goal and
s u b - g o a l s w i l l b e a c q u i r e d f r o m t h e d a t a s o u r c e s u n d e r e x p l o r a t i o n . T h e
g oal an d s ub - go al s ets ar e to b e exp and ed in the ex plor ation pr oces s thereafter.
An evaluation of the goal and the sub-goal relations in this process detects

 G K

D

B

A

D

data changes and recognizes the need for network revisions subsequently. The
task is conducted by propagating the probability dependence values along the
network links. After certain process and manipulation, a portion of the
network will be updated by adding and/or modifying the nodes and links. The
process of propagating and refining the BN will then lead to the generation of
useful knowledge patterns.

In the following, we use an example to show that the above approach is able
to direct the control and attention of a knowledge discovery process that is
tailored to a particular instance by applying certain domain knowledge. The
agent-based system will develop, revise, and refine the sub-goals dynamically
with respect to the intermediate results at different stages of the knowledge
discovery process.

12.3.4.3 An example
To illustrate the role of causal network in this model, consider a database

consisting of employee information including the educational background and
employment history. Let Q(x, p) be a goal for a KDD process, where x =
“profit,” and p = “high.” The proposition Q(x, p) intends to find a knowledge
pattern that gives a qualitative and/or quantitative description of “Profitable”
for a “profit” to be “high.” Given such a request, we have an initial BN as
Figure 12.4.

Q(x, p)

Q (x, p’)

 π[Q(x, p) | Q(x, p’)]

Initial BN

p’: sales

Figure 12.4 An initial BN with one sub-goal

Ex p a n d in g t h e in it ial n etw o r k b y in co r p o r a te th e s u b - g o al Q (x , p ’) w i th
th e database contents to be explored, we have a new BN of Figure 12.5,
where the goal Q(x, p’) has links to two sub-goals.

Q (x, p)

Q(x, p’)

π[Q(x, p) | Q(x, p’)]

Expanded BN

Q(x, T) Q(x, P)

π[Q(x, p’)|Q(x, T)] π[Q(x, p’) | Q(x, P)]

 π[. | .]

T: Stores P: Products

Figure 12.5 An expansion of initial BN

It is the task of KDD to establish the necessary probability dependency
functions on the links of the above network. According to this expanded BN,
we have two sub-goals; one is related to “stores” and the other to “locations.”
In these cases, the involved nodes can be further expanded.

In summary, in order to generate useful knowledge patterns from the
information retrieved from databases, it is necessary to focus properly on the
goals and sub-goals of the knowledge discovery process. This paper presents a
goal-driven approach for regulating the control and attention activities. The
knowledge discovery process is built upon the deposition of a set of goals and
sub-goals on which the control and attention of the process can be specified.
The approach uses a belief network structure to represent the knowledge
patterns in the forms of goals and sub-goals relations, and moderates the
propagation of domain knowledge in a dynamic process. An initial BN
records possible relations between the ultimate goal and a set of sub-goals.
One purpose for the use of this structure is to reduce the complexity involved
in the dependency representations for the goal and sub-goals. The network
serves as an underlying structure to regulate the operations in the control and
attention of a knowledge discovery process. The approach is suitable to
generate knowledge patterns that start from a coarse description and then
refined in a step by-step process.

12.3.5 A BRIEF REMARK ON INFLUENCE DIAGRAM AND
DECISION THEORY

Uncertain reasoning is important because we want to deal with uncertainty
in decision making. Belief networks can help us in prediction and diagnosis
involved in uncertainty. However, decision making still means more,
including planning (a brief introduction of planning was given in Chapter 3).
Decision theory is a discipline concerned with mathematical theories of
decision making. Ideas from decision theory are adapted for use in automated
decision-making systems. In the following, we give a quick remark on
decision theory.

The consequences of decision making are represented by a set of outcomes
Ω that represent all aspects of the world that the decision maker cares about.
In case there is more than one outcome, we assign to each outcome a number,
called the utility of the outcome, that provides a measure of the value of a
given outcome. A utility function U maps outcomes to the real numbers. We
can also compute the expected utility for a plan π, Eπ(U) = ΣP(ω)U(ω) for all
ω∈Ω . A decision tree method can then be used for representing decision
problems and computing a plan that maximizes expected utility.

An influence diagram represents all the information necessary to compute a
plan that maximizes expected utility. Influence diagrams are extensions of
belief networks to include decision variables and utility. A decision variable is
like a random variable, with a domain, but it does not have an associated

probability distribution. Instead, an agent chooses a value for each decision
variable. An influence diagram is a DAG with three types of nodes:
• Chance nodes (ellipses) are the same nodes that are in a belief network.
• Decision nodes (rectangles) are labeled with decision variables whose

values can be set by the decision maker.
• A value node (diamond) represents the utility. There is only one such

node.
The notion of utility is a reflection of relative worth to the agent of different

decision outcomes. Utilities are defined in terms of lotteries. More detail of
inference diagram can be found in [Russell and Norvig 1995].

12.3.6 PROBABILITY THEORY WITH MEASURED BELIEF AND
DISBELIEF

12.3.6.1 Certainty factors
An early ad hoc approach for uncertain reasoning employs the concept of

certainty factors as used in an expert system called MYCIN. This approach
starts from the basic notion of probability, but does not stay with the whole
theory. The certainty factor is used to indicate the degree of confirmation, and
is calculated in terms of measure of belief and measure of disbelief. A
certainty factor (CF) is defined as

CF(H, E) = MB(H,E) - MD(H,E),
where CF is the certainty factor in the hypothesis H due to evidence E, MB is
the measure of increased belief in H due to E, MD is the measure of increased
disbelief in H due to E. In addition, combination function has been defined to
combine two certainty factors. The major advantage of CF was the simple
computations by which uncertainty could be propagated in the system.
However, the simple computations have conflict with conditional probabilities
and is thus lacking of a theoretical foundation.

12.3.6.2 Dempster-Shafer Theory
The concepts of belief and disbelief are also used in Dempster-Shafer

theory. But in addition to belief and disbelief, a third concept, nonbelief, is
also introduced. Unlike the approach of certainty factors, Dempster-Shafer
theory has a sound theoretical foundation based on probability theory. The
irony is, in practice, very few applications are based on this theory, due to the
problems to be discussed at the end of this section. Nevertheless, it is an
important theoretical development, and has connections with other uncertain
reasoning methods.

The Dempster-Shafer theory is based on two ideas:
• the idea of obtaining degrees of belief for one question from subjective

probabilities for related questions;
• the use of a rule about combining these degrees of belief when they are

based on independent items of evidence.
Dempster's rule produces a new mass that represents a consensus of the

original, possibly conflicting evidence (in favor of agreement). An important

feature of Dempster-Shafer theory is that it considers ignorance: there is a
fundamental distinction between lack of certainty and ignorance; belief and
disbelief are no longer viewed as functional opposites.

The following are some basic terminology used by this theory.
• Frame of discernment Θ (a finite nonempty set) is an environment (i.e.,

universe of discourse) where its elements may be interpreted as possible
answers, and only one answer is correct.

• Mass (also called basic probability assignment) is an evidence measure.
Formally, it is a function m: 2Θ → [0,1] such that

(1) m(∅) = 0 (no belief is committed to the empty set)
(2) ΣA⊆ Θ m (A) = 1 (total belief is equal to 1)}

Note that m(Θ) ≠ 1. Note also that the term "mass" is due to an analogy:
degree of belief in evidence is similar to mass of physical object.

• Belief (denoted as Bel) is also called the belief function, belief function
over Θ, belief measure, or support. Belief (a number between 0 and 1) is
defined in terms of mass (m): Bel(X) = ΣY⊂X m(Y). It is the total belief of
a set and all its subsets. In contrast, mass is the local belief, the belief in a
set and not any of its subsets.

• Focal element of a belief function over Θ is a subset A of the frame of
discernment Θ which satisfies m(A) > 0 (a subset with non-empty
mass),where m is the basic probability assignment associated with Bel
(mass). The union of all the focal elements of a belief function is called
the core.

• Plausibility (Pls) is defined as Pls(A) = 1 - Bel (A) (a number between 0
and 1). It is thus not disbelief.

We can now introduce the principle of indifference: a fundamental
difference with probability theory is the treatment of ignorance. Ignorance is
neither belief nor disbelief. Nonbelief (no belief) is any belief that is not
assigned to a specific subset. Therefore, nonbelief ≠ disbelief.

The following are some important properties of belief and plausibility
functions:

 Bel (∅) = Pls (∅) = 0
 Bel (Θ) = Pls (Θ) = 1
 Bel (A) ≤ Pl (A)
 Bel(A) + Bel(A) ≤ 1
 Pls(A) + Pls (A) ≥ 1
 A ⊆ B ⇒ Bel(A) ≤Bel (B)
 A ⊆ B ⇒ Pls(A) ≤Pls (B)

Instead of restricting belief to a single value, there is a range of belief in the
evidence. This range is referred to as evidence interval (EI). EI is bounded by
support and plausibility:
• lower bound: support (Spt) or Bel; minimum belief based on the

evidence.
• upper bound: plausibility (Pls); maximum belief.

As an example, let us think about event A: "it will snow tonight" (with
degree of belief 0.3); andA ("Not snow tonight" with degree of belief 0.4).
Then we have the evidence interval as depicted in Figure 12.6.

Figure 12.6 An example of evidence interval

The following are some important properties concerning Bel, Pls and EI:
0 ≤ Bel ≤ Pls ≤ 1
EI = [Bel (S), 1 - Bel(S)]
EI = [total belief, plausibility]
 = [evidence for support, evidence for support + ignorance]

We can also define Doubt (or Dbt):
Dbt(X) = Bel (X') = 1 - Pls (X) = Igr(X) = Pls(X) - Bel(X)

Pls (X) = 1 - Bel(X') = 1 - Dbt(X)
= 1 - ΣY⊆ X' m(X')

= ΣB⊆Θ m(B) - ΣB⊆A m(B) = ΣB∩A≠ ∅ m(B).
As we mentioned earlier, a strength of Dempster-Schafer theory is the

ability of combining evidence. Note the assumption used here is that both
pieces of evidence are independent; therefore, the purpose is to combining
independent evidences.

We may use Dempster's rule of combination to yield the combined mass:
m1 ⊕ m2 (Z) = ΣX∩Y=Z m1(X)m2(Y)

(where ⊕ denotes the orthogonal sum, also called direct sum).
As an example, consider the frame of discernment Ω = {A,B,C,D}.

Assuming we have two independent measures: in m1, we have 0.6 for ABD,
0.4 for Ω; in m2, we have 0.7 for ABD and 0.3 for Ω. Combining m1 and m2,
we obtain m3, as shown in Table 12.1(a). Note that all measures for m3 add
up to 1.

 Table 12.1(a) Combining m1 and m2

 m3 m2
 m1

ABC (0.7) Ω(0.3)

ABD (0.6)
Ω(0.4)

AB(0.42)
ABC(0.28)

ABD(0.18)
Ω(0.12)

In addition, suppose we have a third independent opinion m4: 0.8 for D and
0.2 for Ω. We can further combine m4 with m3, as shown in Table 12.1(b).

 Ignorance (EI)
 0 0.3 (Bel) 0.6 (Pls) 1

Snow No snow (disbelief)

 Table 12.1 (b) Combining m3 and m4
 m5 m4
m3 D(0.8) Ω(0.2)

AB(042)
Ω(0.12)

ABC(0.28)
ABD(0.18)

∅(0.336)

D(0.096)
∅(0.224)

D(0.144)

AB(0.084)
Ω(0.024)

ABC(0.056)
ABD(0.036)

Note that all measures for m5 are added up to 1. However, since empty sets do not
represent any real meaning, they should be removed. The process of removing
empty sets and re-distributing the measure is called normalization. In this
example, the empty sets ∅ has measure 0.336 + 0.224 = 0.56. Measures for
non-empty sets are divided by denominator (1 - 0.56 = 0.44). Note also the
measure for D (which appears twice in the table) is combined ((0.096 + 0.144)
/ 0.44 = 0.545). (Measure for empty set is dropped to 0.)

The main difficulty of Dempster-Shafer theory is that in order to use this
approach, we have to consider all subsets and assign probabilities. This has
posed a very serious restriction to real world applications. The problem with
normalization is that it ignores the belief that the object being considered does
not exist.

12.4 FUZZY SET THEORY

12.4.1 FUZZY SETS

In order to illustrate different considerations in uncertain reasoning for
decision making, we now turn to reasoning using fuzzy set theory. Due to the
existing rich literature in this area and the wide scope of this topic, we will
only provide a brief overview on fuzzy set theory. Our discussion is restricted
to the unique features presented in fuzzy reasoning, rather than a detailed
discussion of fuzzy reasoning itself.

There is a brief remark on the terminology. The term fuzzy logic was
originally coined to refer to multivalued logic (in contrast to standard logic as
discussed in Chapter 2, which is two valued -- true or false, nothing else). In
this sense, fuzzy logic is not the alias of fuzzy set theory. However, later
development in this area has changed the meaning of the term "fuzzy logic." It
is now widely used to refer to reasoning with fuzzy sets or with sets of fuzzy
rules. This makes the term "fuzzy logic" somewhat redundant. In the rest of
this book, we will not distinguish these two terms, and will use the term
"fuzzy set theory" to refer to materials related to both issues.

12.4.1.1 Probability reasoning versus fuzzy reasoning
Probability is concerned with occurrence of well-defined events. It can be

distinguished into subjective one and objective one. On the other hand, fuzzy
sets deal with graduality of concepts and describe their boundaries and have
nothing to do with frequencies (repetition) of an event. Consider an

experiment whose outcome (O) can eventually occur. Only before the
experiment can one think of the probability of O, P(O). Once the experiment
is over, the probability facet of uncertainty vanishes. The outcome is
unambiguously known: A has happened or not. In contrast, let O be a fuzzy
set; after the experiment, the idea is still valid and fully intact. The conceptual
difference between these two notions of uncertainty makes the mathematical
frameworks of fuzzy sets and probability also very different. While
approaches based on probability hinge on the concepts of (additive) measure
theory, fuzzy set approaches rely on set theory and logic [Kasabov 1996].

Fuzzy set theory provides a very flexible theoretical framework and an
ocean of related literature exists. We will only provide an overview on some
selected notions of fuzzy set theory to illustrate the basic concerns of fuzzy set
theory.

12.4.1.2 Conceptualization in fuzzy terms using linguistic variables
A linguistic variable is a variable which takes fuzzy values and has a

linguistic meaning. A linguistic variable has linguistic values (or fuzzy labels).
Linguistic variables can be quantitative (for example, time early or late) or
qualitative (for example, certainty or belief). The process of representing a
linguistic variable into a set of linguistic values is called fuzzy quantization.
Two parameters must be defined for this procedure: the number of fuzzy
labels and the form of the membership functions for each of the fuzzy labels.
Note that fuzzy discretization does not lead to loss of information if the fuzzy
labels are correctly chosen (this is not the case with interval discretization).
Zadeh noted that the use of linguistic values may be viewed as a form of data
compression. It is suggestive to refer to this form of data compression as
granulation. We also need to consider fuzzy qualifier and fuzzy quantifier: a
fuzzy qualifier indicates true to some degree, such as "somewhat true" or
"fairly tall". A fuzzy quantifier indicates true to some extent, such as "most" or
"usually."

12.4.1.3 Characteristic functions of fuzzy sets
According to Zadeh, a fuzzy set may be regarded as a class in which there

is a graduality of progression from membership to non-membership or, more
precisely, in which an object may have a grade of membership intermediate
between unity (full membership) and zero (non-membership).

The concept of fuzzy set is defined as follows. Consider a classical set A' of
the universe U. A fuzzy set A is defined by a set of ordered pairs, a binary
relation,

A = {(x, µA(x)) | x ∈ A', µA ∈ [0,1]},

where µA(x) is a function called membership function and it specifies the
grade or degreee to which any element x in A belongs to the fuzzy set A.

The S function (so called because it is shaped like English character S) is a
mathematical function that is often used in fuzzy sets as a membership

function. It is defined for continuous variable X as follows (with parameters α,
β, γ):

0 for X ≤ α

S(X; α, β, γ) = 2((X - α)/(γ - α))2 for α in≤ X ≤ β
1 - 2((X - γ)/(γ - α))2 for β ≤ X ≤ γ
1 Otherwise

Using S-function we can conveniently define fuzzy membership functions
such as "tall." In fact, "tall" can be defined as S(X; 5, 6, 7). In addition, for
easy of use, S-function can be discretized. For example, by plugging in X = 5,
5.5, 6, 6.5 and 7, we can obtain the Table 12.2 as a discrete membership
function for "tall."

Table 12.2 Fuzzy membership function Tall
5 5.5 6 6.5 7
0 0.125 0.5 0.875 1

This table can be written in a shorthand form as
Tall = {0/5, 0.125/5.5, 0.5/6, 0.875/6.5, 1/7}

Another useful function is called Π function. It consists of two S-functions
(as shown in the following definition). Since it is symmetrical, it can be used
to define fuzzy proposition such as "X is close to γ." This function is defined
as:

S(X; γ - β, γ - β/2, γ) for x ≤γ
Π(X; β, γ) =

S(X; γ, γ + β/2, γ + β) otherwise

Yet another useful function is called Z function, because it shapes like the
letter Z. But the formula will not be presented at here. Examples of using
these three functions will be presented in the section on FuzzyCLIPS where
these functions will be plotted.

Finally, the support of a fuzzy set, F, is a subset of the universe set, X,
defined as

Support(F) = {x |x ∈ X and µF (X) > 0}

12.4.1.4 Fuzzy decision making systems
Fuzzy logic, when applied to decision-making problems, provides formal

methodology for problem solving, and incorporates human consistency, which
are important characteristics required by fuzzy decision-making systems. Such
systems should possess the following functionality:

(a) Explain the solution to the user.
(b) Keep a rigorous and fair way of reasoning.
(c) Accommodate subjective knowledge.
(d) Account for "grayness" in the solution process.

Fuzzy reasoning particularly suits modeling a group decision-making
process. There are a group of individuals (experts) xi involved in this process,
there are a set of options sj, and there are parameters describing the experts'
opinions and preferences. The task is to find some option on which there is a
consensus among the experts. The task can be handled by using fuzzy
preference relations or using linguistic quantified propositions of the form
"QBX are F." For example, Q denotes "most," B denotes "stock," x denotes
"prices," F denotes "up."

12.4.2 FUZZY SET OPERATIONS

12.4.2.1 Basic operations
There are many ways to define fuzzy set operations. The following are

some popular ones. They are defined on two fuzzy sets µA and µB. Examples
for some operations are also included.
• Set equality A=B, if and only if µA(x) = µB(x) for all x ∈X
• Set complement A': µA'(x) = 1 - µA(x)
• Set containment A ⊆ B if and only if µA(x) ≤ µB(x)
• Set union A ∪ B: µA∪B (x) = ∨ (µA(x), µB(x)) = max(µA(x), µB(x))

For example, suppose µA(x) = {0.2/3, 0.5/4, 0.8/5) and µB(x) = {0.3/3,
0.6/4, 0.7/5}, we have µA∪B (x) = {0.3/3, 0.6/4, 0.8/5}.

• Set intersection A ∩ B: µA ∩B (x) = ∧(µA(x), µB(x)) = min (µA(x), µB(x))
For example, for the same two sets defined above, we have µA ∩B (x) =
{0.2/3, 0.5/4, 0.7/5}.

• Set product AB: µAB(x) = µA(x) µB(x)
• Power of a set AN: µAN (x) = (µA(x))
• Bounded sum (bold union) A ⊕ B: µA⊕B = ∧(1, µA(x) + µB(x))
• Concentration CON(A): µCON(A) = (µA(x))

2

Concentration can be used to define concepts modified by the word
"very." For example, from the "tall" function defined earlier, we can
define "very tall" using concentration:

Very Tall = {0/5, 0.015/5.5, 0.25/6, 0.77/6.5, 1/7}
Comparing with the original Tall function, we can see the effect of the
concentration operation: For example, 6 foot was considered as "tall" with
degree 0.5, but is considered as "very tall" with a much reduced degree of
0.25.

• Dilation DIL(A): µDIL(A) = (µA(x))
0.5. This is the inverse operation of

concentration.
• Intensification INT(A): µ INT(A)(x) is defined as

 2(µ A(x))2 for 0 ≤ µA(x) ≤ 0.5
 1 - 2(1 - µ A(x))2 for 0.5 < µA(x) ≤ 1

• Normalization NORM(A): µNORM(A)(x) = µA(x)/ max{µA(x)}
Normalization actually requires the largest fuzzy set function value be
equal to one. So for µA(x) = {0.2/3, 0.5/4, 0.8/5), its normalization is µA(x)
= {0.25/3, 0.63/4, 1/5).

12.4.2.2 Triangular norms
We now take a look at the fuzzy set operations from a broader perspective.

Since characteristic functions are equivalent representations of sets, the basic
intersection, union and complement operations are conveniently represented
by taking the minimum, maximum and one-complement of the corresponding
characteristic functions for all x ∈ X:

(A ∩ B)(x) = min(A(x), B(x)) = A(x) ∧ B(x),
(A ∪ B)(x) = max(A(x), B(x)) = A(x) ∨ B(x),
A(x) = 1 - A(x),

where A and B are sets defined in a universe X, and (A∩B)(x) and (A∪B)(x)
denote the membership functions of the sets resulting from the intersection
and union of A and B, respectively. The use of max and min operators is very
common in fuzzy set applications. Moreover, they can be generalized into
triangular norms which are the models of operations on fuzzy sets.

Triangular norm (t-norm). It is a binary operation t: [0,1]2 → [0,1]
satisfying the following requirements:

• Commutativity: xty = ytx
• Accociativity: xt(ytz) = (zty)tz
• Monontonicity: If x ≤ y and w ≤ z, then xtw ≤

ytz
• Boundary conditions: 0tx = 0, 1tx = x.

Apparently, the min operator ∧ is a t-norm. Therefore, the concept
of t-norm extends the concept of set intersection operation. As
another simple example, arithmetic multiplication can be used as "t":
xty = xy. We may easily verify all the above four requirements are
satisfied.
Triangular co-norm (s-norm). It is a binary operation t: [0,1]2 →
[0,1] satisfying the following requirements:

• Commutativity: xsy = ysx
• Accociativity: xs(ysz) = (zsy)sz
• Monontonicity: If x ≤ y and w ≤ z, then xsw ≤

ysz
• Boundary conditions: xs0 = x, xs1 = 1.

Apparently, the min operator ∨ is an s-norm. Therefore, the concept
of s-norm extends the concept of set union operation. As another
simple example, the following formula defines an s-norm: xsy = x + y
- xy. We may easily verify all the above four requirements are
satisfied.

For each t-norm there exists a dual s-norm, this means
xsy = 1-(1-x) t (1-y),
xty = 1 - (1-x) s (1-y).

The above two formulas can be written as
1-xsy = (1-x) + (1-y),
1-xty = (1-x) s (1-y).

Apparently, these two relationships are just de Morgan laws (s and t are
corresponding to ∪ and ∩, respectively):

¬(A ∪ B) = ¬A ∩¬B
¬(A ∩ B) = ¬A ∪¬B

12.4.3 RESOLUTION IN POSSIBILISTIC LOGIC

12.4.3.1 Possibility and necessity
In order to demonstrate how fuzzy set theory can be combined with

traditional interest of computational intelligence, we provide a brief discussion
on possibility and necessity. In particular, we want to show theoretical
result derived from fuzzy set theory can be used to enhance resolution proof as
discussed in Chapter 3. The measures of possibility and necessity are among
the most commonly used mechanisms of expressing matching between two
fuzzy sets (and more generally, fuzzy relations). For example, the possibility
measure Poss(X,A) describes a degree of overlap between X and A. The
confidence parameter g(E) is defined as 0 ≤g(E) ≤1, E ⊆ U, where E is an
event from a domain U of all possible events. The following axioms are valid
for g(E):

A1. E1 ⊆ E2 ⇒ g(E1) ≤ g(E2).
A2. ∀A, B ⊆ U, g(A∪B) ≥ max(g(A), g(B)).
A3. ∀A, B ⊆ U, g(A∩B) ≤ min(g(A), g(B)).

When a measure for the confidence parameters of A and B that makes A2 an
equality, it is called possibility:

 ∀A, B ⊆ U, g(A∪B) = max(g(A), g(B)).
When a measure for the confidence parameters of A and B that makes A3 an
equality, it is called necessity:

∀A, B ⊆ U, g(A∩B) = min(g(A), g(B)).
Possibility is the degree to which an expert considers a hypothesis H to be
feasible or simply possible. Possibility is non-statistical; rather, it is capacity
or capability. It refers to allowed values.

12.4.3.2 Remark on possibilistic logic
The resolution rules presented in this section are in possibilistic logic which

is closer to classic logic than fuzzy logic. But we will not focus on
possibilistic logic itself. Our purpose is to use possibilistic logic to
demonstrate how resolution proof cab be done when an inexact match is used.
[Dubois, Long and Prade 1991] provides an example. The proof entails the
existence of "optimal refutations," i.e., derivations of an empty clause with a
maximal valuation, the valuations being ordered by:

(N α) ≤ (N β) if and only if α≤β
(Π α) ≤ (Π β) if and only if α≤β
(Π α) ≤ (N β) for any (α, β) ∈ [0,1] × [0,1]

12.4.3.3 An example
Consider an example with the following knowledge base.

K1. If Alan attends a meeting, then Bob does not.
K2. Alan comes to the meeting tomorrow.
K3. If Cindy attends a meeting, then it is likely that the meeting will not
be quiet.
K4. It is highly possible that Cindy comes to the meeting tomorrow.
K5. If Don comes tomorrow and Bob does not, then it is almost certain
that the meeting will not be quiet.
K6. It is likely that Bob or Elvis will come tomorrow.
K7. If Elvis comes tomorrow, it is rather likely that Don will come.
K8. If Elvis does not come tomorrow, it is almost certain that the meeting
will be quiet.

The knowledge can be represented in following clauses:
 C1. ¬ attends(alan) ∨ ¬ attends(bob) (N 1)
 C2. attends(alan). (N 1)
 C3. ¬ attends(cindy) ∨ ¬ quiet(meeting). (N 0.7)
 C4. attends(cindy). (P 0.8)
 C5. attends(don) ∨ ¬attends(elvis) ∨ ¬quiet(meeting). (N 0.8)
 C6. attends(bob) ∨ attends(elvis) (N 0.7)
 C7. ¬ attends(elvis) ∨ attends(albert) (N 0.6)
 C8. attends(elvis) ∨ quiet(meeting). (N 0.8)

In addition, we have the negated goal: C0. quiet(meeting). The process of
fuzzy resolution is shown in Figure 12.7.

Figure 12.7 Resolution in possibility logic

12.5 FUZZY RULES AND FUZZY EXPERT SYSTEMS
In this section we examine some most of the important concepts related to

fuzzy inference. We start our discussion on fuzzy relations.

12.5.1 FUZZY RELATIONS

Fuzzy relations link two fuzzy sets in a predefined manner. A fuzzy relation
is fundamentally a fuzzy subset in the Cartesian product universe. The fuzzy
relation for N sets is defined as

R = {µR (x1, x2, … xN) / (x1, x2, … xN) | xi ∈ Xi, I = 1, 2, … N)}

which associates the membership grade of each N-tuple.

 c0 c3 c0 c5 c1 c2

¬a(cindy) (N 0.7) c4 a(bob) ∨ ¬a(don) (N 0.8) ¬a(bob) (N 1) c6

 ¬a(don) (N 0.8) c7 a(elvis)(N 0.7)

 ¬a(elvis)(N 0.6)

Note: "a" stands for "attends" [] (N 0.6)

A fuzzy relation can be represented by a matrix or a fuzzy graph. In this
chapter, we will use matrix form only.

A composition relation (or simply composition) of fuzzy relations R1(A,B)
and R2(B, C) is a relation obtained after applying relations R1 and R2 one after
another. A typical composition is the Max-min composition. The composition
of relations is the net effect of applying one relation after another. For the case
of two binary relations P and Q, the composition of their relations is the binary
relation R,

R(A,C) = Q(A, B) ° P(B,C),

where A, B, C are sets, and R(A,C) is a relation between A and C, Q(A,B) is a
relation between A and B, P(B,C) is a relation between B and C, and ° is the
composition operator. In terms of membership grades, R = {µR (a,c) / (a, c) | a
∈ A, c ∈ C}, where µR is defined as follows:

µR(a, c) = ∨b∈B [µQ(a,b) ∧ µP(b,c)] = max b∈B [min (µQ(a,b) µP(b,c))]
A fuzzy relation usually is expressed in the form as exemplified in Table

12.3(a), where the entries are fuzzy membership function values.

 Table 12.3(a) A fuzzy relation
 Y1 y2 y3

X1
X2

0.2 0.1 0.2
0.2 0.3 0.4

This table can be expressed in the form of conventional relation (as
discussed in Chapter 3) in Table 12.3(a).

 Table 12.3(b) Fuzzy relation in conventional format
 X Y Membership grade
 X1 Y1 0.2
 X1 Y2 0.1
 X1 Y3 0.2
 X2 Y1 0.2
 X2 Y2 0.3
 X2 Y3 0.4

The advantage of representing a fuzzy relation in the form of Table 12.3(a)
is that it clearly indicates the fuzzy membership function values and certain
operations (such as projections) [Giarritano and Reley 1998) can be easily
applied.

The reason we are interested in fuzzy relations is that they are closely
related to fuzzy inference using fuzzy rules.

12.5.2 SYNTAX AND SEMANTICS OF FUZZY RULES

12.5.2.1 Fuzzy system components
A fuzzy system consists of three parts: fuzzy input and output variables and

their fuzzy values; fuzzy rules; and fuzzy inference methods, which may
include fuzzification and defuzzification. This is because the outcome of the
fuzzy inference process is a fuzzy set, specifying a fuzzy distribution of a
conclusion. However, in control applications, only a single discrete action
may be applied, so a single point that reflects the most appropriate value of the

set needs to be selected. The process of reducing a fuzzy set to a single point
is known as defuzzification.
 There are several types of fuzzy rules. For example, Zadeh-Mamdani's fuzzy
rules have the following format:

If x is A, then y is B,
where

 "x is A" and "y is B" are two fuzzy propositions;
x and y are fuzzy variables defined over universes of discourse U and V
respectively;
A and B are fuzzy sets defined by their fuzzy membership functions.

12.5.2.2 Syntax of fuzzy rules
Fuzzy rules are conditioned fuzzy propositions. When the proposition in the

consequent of the first statement (If A then B) is also an antecedent of the
second (If B then C), the rules are said to be chained. Otherwise, they are
parallel rules. Parallel rules are most commonly interpreted by viewing each
rule as inducing a fuzzy relation Ri, and the set of rules as a fuzzy relation that
is an "aggregation" of the individual relations.
 Fuzzy rules typically involve qualified or quantified propositions.

• Qualified propositions. Fuzzy proposition’s can be qualified by
associating with the propositions modal or intensional operators
leading to possibility qualification (as in "If the temperature is
low, then the good product is impossible") and probability
qualification (as in " If the temperature is low, then valve
opening is low is unlikely"). Propositions may be more generally
qualified (with the word "usually").

• Quantified propositions. Propositions can be quantified by fuzzy
quantifiers such as most, frequently, many, several, about ten,
etc.

We also note that there are some special types of rules:
Unless rules: Rule may have exceptions;
Gradual rules: Rules with the format of "The more…the more" or "The
less…the less…"

 Compound propositions can be constructed through conjunctions and/or
disjunctions of propositions to form new propositions.

12.5.2.3 Fuzzy inference and fuzzy relations
Essentially, statements of the form "If X is A , then Y is B" describe a

relation between the fuzzy variables X and Y. This suggests that a fuzzy rule
can be defined as a fuzzy relation R, with the membership grade R(x,y)
representing the degree to which (x, y) ∈ X × Y is compatible with the relation
between the variables X and Y involved in the given rule. If A and B are fuzzy
sets of X and Y, then the relation R on X × Y can be determined by the
relational assignment equation

R(x, y) = f(A(x), B(y)), ∀(x, y) ∈ X × Y,

where f is a function of the form f: [0,1]2 → [0,1]. In general, the fuzzy
relations induced are derived from three main classes of f functions: fuzzy
conjunction, fuzzy disjunction and fuzzy implication.

A fuzzy relation can be represented by a matrix or a fuzzy graph. The Rc
implication relation "heavy smoker" (in terms of number of packs of cigarettes
consumed) → "high risk of cancer" can be represented in a matrix form shown
in Table 12.4 (following [Kasabov 1996]). (Here the relation can be
considered as representing a rule: "if heavy smoker then risk".)

Table 12.4 A relation used to represent a rule
Cigarettes

packs
Low risk Medium risk High risk

0
5
10

0
.2
0

0
.5
.7

0
.5
1

A composition relation of fuzzy relations R1(AB) and R2(BC) is a relation
R(AC) obtained after applying relations R1 and R2 one after another. A typical
composition is the Max-Min composition:

R(AC): µR(ac) = ∨{µR1(ab) ∧ µ R2(bc) },

where ∨ denotes Max and ∧ denotes Min, a ∈A, b ∈ B, c ∈ C.

12.5.2.4 Fuzzy implication
When we are given a statement of the form "x is A," from (x,y) is F (here A

⊆ X and F is a relation, F ⊆ X × Y), we can infer that y is B, B ⊆ Y. The
computing scheme involves sets and retains the symbolic form

X is A
(x,y) is F

y is B.
In the more general case when a collection of fuzzy rules is interpreted as a
functional dependency F* between the fuzzy variables X and Y, the problem
of computing the value of Y given a value of X can be expressed as the
inference scheme

X is A
(x,y) is F*

y is B.
The compositional rule of inference also applies when interpreting each fuzzy
rule of a given collection as a fuzzy relation Ri, I = 1, …, N, induced by any of
the fuzzy implication functions. Therefore, for (X,Y) is R, using the
compositional rule of inference we have

X is A
(X, Y) is R

y is B,
which implies

X is A
(X, Y) is R
y is A° R.

12.5.3 FUZZY INFERENCE METHODS

12.5.3.1. Fuzzy inference laws
Fuzzy inference refers to an inference method that uses fuzzy implication

relations, fuzzy composition operators, and an operator to link the fuzzy rules.
The result of the inference process is some new facts based on the fuzzy rules
and the input information supplied. A popular reasoning strategy is
generalized modus ponens. When this law is applied over a simple fuzzy rule,
it works in the following manner:

If x is A, then y is B,
 Now x is A'
 so y is B'.

The compositional rule of inference can be used to implement the generalized
modus ponens:

B' = A' ◊ (A→ B) = A' Rab,

where → is a compositional operator, and Rab is a fuzzy relational matrix
representing the implication relation between the fuzzy concepts A and B.

12.5.3.2. Combining inference results
In a fuzzy production system, within a recognize-act cycle, all the rules are

fired at every cycle (due to inexact matching) and they all contribute to the
final result. There are so-called else-links to combine these results.
Rules of inference in fuzzy systems

One way of defining generalized modus ponens is throught the following
formula:

X is F
Y is G if X is H

Y is F ° (H' ⊕ G)

where H' is the fuzzy negation of H and the bounded sum is defined as
µH'⊕G (x, y) = 1 ∧ (1 - µH(x) + µG(y)].

12.5.3.3 Fuzzy rule evaluation
The most important difference between the fuzzy logic and the

conventional two state logic must be their inference techniques. Consider the
simple rule of form:

if A then C
A'

C'

A is the antecedent of the rule
A' is the matching fact in the fact database
C is the consequent of the rule
C' is the actual consequent calculated

In the two state logic, the antecedent A and fact A' has to be exactly the
same to issue the conclusion C' referring to consequent C. On the other hand,
in the fuzzy logic, the rule can issue the actual consequent C' as long as the
matching fact A' is somewhat belongs to the antecedent A. Four types of rules
can be considered, as shown in Table 12.5.

Table 12.5 Type of Inference Rules
Antecedent Consequent Type of Rule

CRISP CRISP CRISP – CRISP
CRISP FUZZY CRISP - CRISP
FUZZY CRISP FUZZY – CRISP
FUZZY FUZZY FUZZY - FUZZY

Various evaluation methods have been proposed by different authors. In the
following we describe one approach to deal with the following two cases:
• Rules with single proposition in the antecedent and multiple conjunctive

proposition in the consequence; and
• Rules with multiple proposition in the antecedent and single proposition

in the consequence:
Case 1. Rules with single proposition in the antecedent and simple
proposition in the consequence

We illustrate this case by considering the following two sub-cases in a rule
with the form "If A then C." We use CF to indicate the certainty factor (which
reflects the degree of vagueness) associated with consequence C.
a. A is nonfuzzy and C is fuzzy. Consider the following example.

 Rule: If visibility (A) is 16 miles (V1),
 then expected average traffic speed (C) is high (V2) (CF1 =
0.7)

Suppose the case-specific fact is: visibility is 16 miles (CF2 = 0.9), we can
calculate CF3 = 0.7 * 0.9 = 0.63. Our conclusion is that the expected average
traffic speed (C) is high (V2') (CF = 0.63).
b. A and C are fuzzy objects: In this case, it is needed to form a relation RG

which maps A to C. Example of using RG is shown below
Rule: if visibility (A) is poor (V1),
then traffic speed is low (C)

The fuzziness of A and C is given as
 poor visibility: µF1 = 0.9/0.5 + 0.5/5
 low speed: µF2 = 0.8/5 + 0.7/15 + 0.4/25

Suppose the case-specific fact is visibility (A) is poor' (V1'), where
 µF1' = 0.8/0.5 + 0.6/5

In addition, we are given a relation RG: µF1 → µF2 (v) which is a 2 * 3 table
as shown in Table 12.6.

Table 12.6 Relation RG

F1 F2 5 15 25
 0.5 0.8 0.7 0.4
 5 1 1 0.4

 We can calculate F2' = F1' ο RG = 0.8/5 + 0.7/15 + 0.4/25.

Case 2. Rules with single proposition in the antecedent and multiple
conjunctive proposition in the consequence.

In this case, we can split the consequence to form separate rules, with each
conjunct as the sole consequence in a rule. Each rule is then evaluated by
applying Case 1.

Case 3. Rules with multiple proposition in the antecedent and single
proposition in the consequence.

We consider rules with the following format:
 Rule: If A1 AND A2 THEN C is V3

 facts: A1', A2'
 conclusion: C is V3'

We use the logic inference laws to change the form of the rule (this is an
example how predicate logic can aid production rule development):

A1 ∧ A2 → C

= ¬(A1 ∧ A2) ∨ C

= (¬A1 ∨¬A2) ∨ C

= (¬A1 ∨ C) ∨ (¬A2 ∨ C)

= (A1 → C) ∨ (A2 → C)

Consider the following rule as an example.
Rule: If visibility (A1) is poor (V1) and weather (A2) is bad (V2),

then traffic speed (C) is low (V3).
Suppose we are given case-specific facts: visibility (A1) is poor' (V 1'),

weather (A2) is bad' (V2') (hence we use poor' and bad' to denote the degree of
''poor'' and ''bad'' associated with a given fact). How can we handle the
conclusion: traffic speed (C) is slow' (V3)?. (Here we use slow' to denote the
degree of ''slow'' derived from the given facts.)

In order to process this, the rule is split into two rules.
Rule 1: If visibility (A1) is poor (V1) then traffic speed (C) is low
(V3).
 facts: visibility (A1) is poor' (V1')
 conclusion: traffic speed (C) is slow' (V3)
Rule 2: If weather (A2) is bad (V2) then traffic speed (C) is low
(V3).
 facts: weather (A2) is bad' (V2')
 conclusion: traffic speed (C) is slow' (V3)

Suppose from rule 1,F12' = 0.6/5 + 0.6/15 + 0.4/25 and from rule 2, we have
F22 ' = 0.7/5 + 0.5/15 + 0.3/25 + 0.1/35. Performing a union operation (as
introduced in Section 12.4.1) on these two fuzzy sets we obtain the resulting
fuzzy membership function F2' = 0.7/5 + 0.6/15 + 0.4/25 + 0.1/35.

Note that suppose in rule (2) AND is changed to OR. In this case, we should
still perform the split first, and then take the set intersection (instead of set
union).

12.6 USING FUZZYCLIPS
As a concrete example of incorporating fuzzy set theory into expert systems

development, let us take a brief look at FuzzyCLIPS, an extended version of
the CLIPS rule-based shell for representing and maipulating fuzzy facts and
rules. In addition to the CLIPS functionality, FuzzyCLIPS can deal with exact,

fuzzy, and combined reasoning, allowing fuzzy and normal terms to be freely
mixed in the rules and facts of an expert system. When FuzzyCLIPS is used,
all fuzzy variables must be predefined before using the deftemplate statement.
A fuzzy deftemplate describes a fuzzy variable. One may use these
deftemplates to describe fuzzy facts in patterns and assert commands. In
addition, FuzzyCLIPS has a set of predefined modifiers that can be used at
any time to describe fuzzy concepts when fuzzy terms are described in fuzzy
deftemplates, fuzzy rule patterns are written, or fuzzy facts or fuzzy slots are
asserted. The user may also define modifiers that can be used in exactly the
same manner as the predefined ones. FuzzyCLIPS commands and functions
include the following [Orchard 1998]:
• Accessing the universe of discourse;
• Accessing the fuzzy set;
• Accessing the certainty factor;
• Accessing the threshold certainty factor;
• Setting the rule CF evaluation behavior;
• Controlling the fuzzy set display precision;
• Controlling the fuzzy inference method;
• Setting the fuzzy pattern matching threshold;
• Establishing Fuzzy value predicate function;
• Creating and operating on fuzzy-values;
• Accessing a fuzzy slot in a fact;
• Displaying a fuzzy value in a format function;
• Plotting a fuzzy value; and
• Controlling the result of defuzzification.
 The conventional two state logic has been used for the various type of
applications. However, the two state logic is not appropriate for the
applications that need to handle the real world because of its lack of the
capability to process the uncertain information. Expert systems are expected to
perform like a human in the real environment. Therefore, the data handling
methods in the expert systems should be able to well process the uncertain
information as human beings do. In the following we introduce techniques
employed in FuzzyCLIPS Version 6.04A by implementing simple codes.
FuzzyCLIPS Version 6.04A was released by Institute for Information
Technology National Research Council Canada in 1998. FuzzyCLIPS is an
extended version of the CLIPS rule-based shell for representing and
manipulating fuzzy facts and rules. A fuzzy expert system shell is
implemented on top of the conventional CLIPS. (Some relevant materials can
be found at http://ai.iit.nrc.ca/fuzzy/fuzzy.html).

We now give an example which expresses a linguistic expression, "cold,"
"warm," and "hot" of deftemplate "temp" ("temp" itself is not fuzzified).
These three variables are expressed using Z, π (or PI) and S functions,
respectively (as discussed in 12.4.1.3). Temperature ranges from 5 to 40
Celsius. For the Z function, when temp is 10, its value is 0 and when temp is
24, its value is 1 (as shown in the template). For the PI and S functions, the

http://ai.iit.nrc.ca/fuzzy/fuzzy.html

corresponding numbers are shown in the template definition. Figure 12.8
depicts these three functions.

(deftemplate temp
 5 40 Celsius
 (
 (cold (z 10 24))
 (warm (PI 2 24))
 (hot (s 26 31))
)
)

Fuzzy Value: temp
Linguistic Value: cold (c), warm (w), hot (h)

 1.00cccccccccc w hhhhhhhhhhhhh
 0.95 c w h
 0.90 cc
 0.85
 0.80 c w h
 0.75 c
 0.70 c
 0.65 w
 0.60 c h
 0.55
 0.50 c
 0.45 c
 0.40
 0.35 c h
 0.30 w
 0.25 c
 0.20 c
 0.15 c h
 0.10 c w
 0.05 cc h
 0.00hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhwwwwwwwwwwwwwwwwwww
 |----|----|----|----|----|----|----|----|----|----|
 5.00 12.00 19.00 26.00 33.00 40.00
Universe of Discourse: From 5.00 to 40.00

Figure 12.8 Plots of linguistic values with standard function representation

12.7 FUZZY CONTROLLERS

12.7.1 BASICS OF FUZZY CONTROLLER

As a typical example of fuzzy expert systems, we take a look of fuzzy
controllers. A fuzzy controller's underlying structure comes from its rule-
based organization. Its key premise is that control knowledge is available to
specify a control strategy represented by a collection of if-then rules. Thus the
control strategy is structured into control protocols linking the system's current

state with the corresponding control action. Fuzzy controller design is thus
concerned with the calculus of fuzzy rules, and its computing procedures are
governed by rule-based computations.

The architecture of a fuzzy logic controller is shown in Figure 12.9. The
fuzzy logic controller contains three components, the fuzzification, the fuzzy
inference engine, and the defuzzification.

Figure 12.9 Fuzzy controller architecture

12.7.2 BUILDING FUZZY CONTROLLER USING FUZZYCLIPS
As an example, let us consider a simple simulation of the room temperature

and an electrical heater. The controller acquires the room temperature from the
sensor and sends the power setting to the electrical heater. The process repeats
until the desired temperature is achieved.

The feature of the electrical heater is governed by the physics formulas as
shown below:

P = E2 / R
or
P = I2 * R

Where:
P: Power[w]
E: Control Voltage [V]
R: Resistance of the heater circuit [Ω]
I: Control Current [A]

The voltage level is often used to control the performance of the electrical
devices. It is resonable to assume that the rise of room temperature is linear
against the control voltage, Power Setting:

When Power Setting is equal to 0, no temperature rises.
When Power Setting is equal to 1, the maximum rise of the
temperature.

A simple formula to imitate the electrical heater has been employed:
New Room Temperature

= Current Room Temperature + Room Factor * Heater Temperature * Heater
Power Setting

where Room Factor and Heater Temperature are constant values which are
governed by the room environment such as size, the material of walls etc. and
the maximum temperature of the heater, respectively. Also, we assume the

SIMULATOR

FUZZIFICA-
TION

FUZZY
INFERENCE

ENGINE

DEFUZZIFICA-
TION

outside temperature is always 0°C so that we can ignore the relative
temperature and the change of the outside temperature.

Next, w e h av e to con sid er th e d rop o f the temperatur e caus ed by th e outsid e
lo w tem per ature, 0 °. Th e r oo m temp er atu re sh ould d ro p little by little if th e
heater is of f at the high ro om tem perature. A sim ple f orm ula h as been
develop ed:

New Room Temperature
= Current Room Temperature – Current Temperature * Refrigerator Factor

where Refrigerator Factor is a constant value which is governed by the room
environment.

In this example, the FUZZY–FUZZY inference rule has been applied. This
type of rule is implemented by using the defrule mechanism provided by
CLIPS. We also use the CLIPS deffunction mechanism to define functions.
The FuzzyCLIPS code is shown in Figure 12.10.
__
; conf.clp
; This demonstrates the fuzzy logic controller.
; Always adjust the room temperature to 24 degree.
;;

(defglobal
 ?*HEATER-TEMP* = 40.0
 ?*ROOM-FACTOR* = 0.05
 ?*COUNTER* = 0
 ?*ROOM-TEMP* = 0
 ?*REFRIG-FACTOR* = 0.05
)
(deftemplate Crisp-Value
 (slot HeaterPower)
 (slot RoomTemp)
)
(deftemplate Fuzzy-RoomTemp
 -1 28 Celsius
 (
 (cold (z 10 23))
)
)
 (deftemplate Fuzzy-HeaterPower
 0 1
 (
 (strong (s 0.25 0.75))
)
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Simulation
(deffunction Simulator(?HeaterPower)
 ;--------------------------------------;
 ; Room temp. Adjusted by HeaterPower ;
 ;--------------------------------------;
 (bind ?*ROOM-TEMP* (+ ?*ROOM-TEMP* (* ?*ROOM-FACTOR*
 (* ?*HEATER-TEMP*
?HeaterPower))))
 ;--;
 ; Room temp. Decreases 10 % of current room temperature ;
 ; due to the refrigeration by outside temperature. ;

 ;--;
 (bind ?*ROOM-TEMP* (- ?*ROOM-TEMP* (* ?*ROOM-TEMP* ?*REFRIG-
FACTOR*)))
 (printout t " New room temperature: " ?*ROOM-TEMP* crlf)
 (assert (RoomTemp ?*ROOM-TEMP*))
)
;;;;;;;;;;;;;;;;;;;;;;;;; Fuzzification
(defrule Fuzzification
 ?f1 <- (RoomTemp ?)
 =>
 (retract ?f1)
 (assert (Fuzzy-RoomTemp (pi 1 ?*ROOM-TEMP*)))
 (printout t " Fuzzified temperature is asserted."crlf)
)

;;;;;;;;;;;;;;;;;;;;;;; Fuzzy Inference
(defrule Cold-PowerStrong
 (Fuzzy-RoomTemp cold)
 =>
 (assert(Fuzzy-HeaterPower strong))
)
;;;;;;;;;;;;;;;;;;;;;; Defuzzification
(defrule Defuzzify-HearterPower
 ?f1 <- (Fuzzy-HeaterPower ?)
 =>
 (bind ?HeaterPower (moment-defuzzify ?f1))
 (assert (HeaterPower ?HeaterPower))
 (retract ?f1)
)
;;;;;;;;;;;;;;;;;;;;;; Call Simulator
(defrule Call-Simulator
 ?f2 <- (Fuzzy-RoomTemp ?)
 (HeaterPower ?HeaterPower)
 =>
 (retract ?f2)
 (printout t " Heater power set " ?HeaterPower crlf)
 (bind ?*COUNTER* (+ ?*COUNTER* 1))
 (printout t ?*COUNTER* " Calling Simulator()" crlf)
 (Simulator ?HeaterPower)
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;; Start Program
 (defrule Start
 =>
 (assert (HeaterPower 0))
 (assert (RoomTemp 0))
)

Figure 12.10 FuzzyCLIPS code for the heater

A portion of the output is shown in Figure 12.11.

CLIPS> (run)
 Heater power set 0.7389322916666667
1 Calling Simulator()
 New room temperature: 1.403971354166667
 Fuzzified temperature is asserted.

 Heater power set 0.7389322916666667
2 Calling Simulator()
 New room temperature: 2.737744140625001
 Fuzzified temperature is asserted.
 Heater power set 0.7389322916666667
…
15 Calling Simulator()
 New room temperature: 14.34680654100141
 Fuzzified temperature is asserted.
 Heater power set 0.7252339145874244
15 Calling Simulator()
 New room temperature: 15.00741065166745
 Fuzzified temperature is asserted.
 Heater power set 0.7211679617832571

Figrue 12.11 Part of the output

The output is collected up to 100 minutes (100 repetitions) and plotted
using spreadsheet (not shown here). The line shows a slower achievement of
the desired temperature 24°C. However, the time to achieve the desired
temperature should be adjustable. The fuzzy logic control does not show it has
unstable period. It produced a very smooth and flat temperature line.

12.7.3 FUZZY CONTROLLER DESIGN PROCESS

We now present an example which describes the application of fuzzy rule-
based systems applied to automatic control. The major objective is to show
how fuzzy rule-based control algorithms could be used for developing
controller.

The control problem can be stated trivially as a mapping between inputs
and outputs: y = f(x) , the control law. Traditionally, control laws are derived
from integral-differential equation models of the system dynamics, i.e.,
leading to the computation of forcing values that will cause the system state to
tend to the desired set-point. In control theory, the dynamic nature of a
controlled system is preeminent while in the other two problems we would
normally think of static states; nevertheless, the integrity of the analogy is not
affected. Traditional control theory concentrates on mathematical model
building: the input-output control function is expressed as a closed-form --
with only a few parameters needing to be specified, e.g., related to the
coefficients of the system differential equation.

Fuzzy logic and the method of approximate reasoning led to new concepts
in control theory and in the design of expert systems. These concepts imitate
human thought processes better than conventional methods. The major
c h a r ac te r is t ic o f f u zz y c o n t r o l i s t h e i n co r p o r a t io n a k n o w l ed g e - b a s ed
e x p e r t system somewhere in the controller. In fuzzy controller, the control law
is model-free, i.e., design does not consist of putting values on a few
parameters that complete the specification of an input-output function; rather,
the input-output function can be of any form and highly non-linear. Rule-

based fuzzy systems can be used if human expert knowledge is available
which can be expressed in the form of if-then rules.

Fuzzy control has advantages especially in the cases that the mathematical
model of the control process may not exist or may be too expansive in term of
computing time.

In the following we describe how to implement a fuzzy control algorithm
using FuzzyCLIPS. We show the steps needed to design and implement a
fuzzy logic based expert system based on the following seven tasks needed to
build fuzzy logic expert systems.

In order to build a fuzzy logic expert system, there are seven major tasks
typically performed when developing a fuzzy logic expert system, as
described below.

Task 1: Define the problem. Like all expert system projects, we need to
first obtain a source of knowledge. In this example, the fuzzy rule-based
expert system will be used to Navigate the Golf Cart from initial position to
the location of the golf ball. The problem is depicted in Figure 12.12. In order
to accomplish these tasks, we will need provide the fuzzy system with control
over both the direction and speed of the cart. The cart must initially steer
toward the ball by nullifying the error between the angular direction of the cart
and the direction toward the ball. The cart should also accelerate to some
maximum allowable speed, then slow down and eventually stop when it is
close to the ball.

X

Task 2: Define the linguistic variables. We accomplish this task by
listening to experts and then abstract the knowledge of experts. We want to
uncover the variables that will represent our universes of discourse and the
fuzzy sets that will be defined on each. For our example, from task 1, we
know that our fuzzy system must contend with two basic problems: control
steering of cart to direct it toward the ball, and control the cart’s speed. We
need to ask expert to discuss in general how each of these problems is solved.
For example, for the first problem, we can follow common sense strategy for
steering the cart toward the ball which is “When the direction of the cart is

Y

Figure 12.12 Cart navigation geometry

Ball Distance

(xc, yc)

θ1 - Steering Angle

θ2 - Error Angle

θ3 - Cart Angle

- Cart Position(xc, yc)

θ1

 θ2

θ3

away from the ball, make the cart’s direction toward the ball.” In a similar
fashion we obtain the expert’s strategies for controlling the cart’s speed:

 “When the cart is far from the ball, make the cart’s speed fast.
Otherwise, make the cart’s speed slow.”

From this discussion we can define the following linguistic variables – the
universe of discourses, and define their ranges, as shown in Table 12.7.

Table 12.7 Linguistic variables
 Linguistic Variable Range

 Error angle -60 to 60
 Steering angle -45 to 45

 Speed 0 to 5 yd/s
 Acceleration -2 to 1 yd/s/s

 Ball distance 0 to 600 yd/s

Task3: Define the fuzzy sets. This includes defined member functions for
every linguistic variable and their associated adjectives. In our example, in
order to accomplish this task we need to know a list of typical adjectives used
with each linguistic variable. Our assumptions are summarized in Table 12.8.

Table 12.8 Assumptions used

Error angle Steering angle Speed Acceleration Ball
Distance

Large Negative Hard Right Zero Brake Hard Zero
Small Negative Slight Right Real Slow Brake Light Real Close

Zero Zero Slow Coast Close
Small Positive Slight Left Medium Zero Medium
Large Positive Hard Left Fast Slight

Acceleration
Far

Floor it

The next step we need to know is the information that will allow us to
define the fuzzy sets for each adjective given in the above table. That is, we
can define at what degree the experts believe each fuzzy value will be, for
example, what degree do we believe the speed is slow? These fuzzy mapping
or membership functions can have a variety of shapes depending on how the
expert relates different domain values to belief values. In practice, a piecewise
linear function, such as triangular or trapezoidal shape, provides an adequate
capture of the expert’s belief and simplifies the computation.

Task 4: Define the fuzzy rules. The fuzzy rules come from the domain
knowledge of experts. In our example, we can consider two primary problems
to define the fuzzy rules: steering the cart to the ball and controlling the cart’s
speed. The following rule is an example.

Maintain steering direction
 IF error_angle is Zero
 THEN make steering_angle zero

 (defrule maint_steering
 (ErrorAngle Zero)

 =>
 (assert (SteeringAngle Zero))
)

Task 5: Build the fuzzy expert system. This task involved the coding of
the fuzzy sets, and rules and procedures for performing fuzzy logic functions
such as fuzzy inference. There are two ways to accomplish this task: (a) to
build the system from scratch using a basic programming language; or (b) rely
on a fuzzy logic development shell. If we choose the second method, which is
FuzzyClips. Since we have already shown the FuzzyClips file for the
previous example (i.e., the heater problem), no code will be shown at here.

Task 6: Test the system. After you have built the system, you will want to
test it to see if it meets the specifications defined during task. There are
several useful commands, such as using Batch, dribble-on, clear, load and
halt commands.

Task 7: Tune the system. This step tunes the fuzzy system to achieve
better performance. In general, tuning a fuzzy logic system involves one or
more of the following:

(a) Rules
• Adding rules for special situations
• Adding premises for other linguistic variable

(b) Fuzzy Sets
• Adding sets on a defined linguistic variable
• Broadening or narrowing existing sets
• Shifting laterally existing sets
• Shape adjustment of existing sets

In summary, when fuzzy logic is used, vague terms or rules can be
represented and manipulated numerically to provide results that are consistent
with the expert. By fuzzy control, an application of fuzzy logic to control
problems is meant. Fuzzy control is different from standard control, mainly in
three respects:

• The use of linguistically described concepts, rather than
formulas

• The use of commonsense knowledge, rather than mathematical
knowledge

• The use of methods of fuzzy logic.

12.8 THE NATURE OF FUZZY LOGIC

In the last section of this chapter, we provide an important and interesting
philosophical review on the nature of fuzzy logic.

12.8.1 THE INCONSISTENCY OF FUZZY LOGIC

We start with basic notations in fuzzy logic. Let A denote an assertion. It is
assigned the degree of truth t(A), which is a numerical value between 0 and 1.
For a sentence composed from simple assertions and logical connectives
"and", "or", and "not", the degree of truth is defined as follows (which can be
viewed as axiomatizing degree of membership for fuzzy set intersections,
unions, and completeness):
 (1) t(A ∩ B) = min{t(A), t(B)}

 (2) t(A ∪ B) = max{t(A), t(B)}

 (3) t(¬A) = 1 - A

 (4) t(A) = t(B) if A and B are two assertions equivalent according to
 the rules of classical two-valued propositional calculus.

The following important result has been proved by [Elkan 1993] for any
general formal system satisfying the four postulates listed above:

Theorem. For any two assertions A and B, either t(B) = t(A) or t(B) =
1- t(A).

The importance of this theorem is that it revealed the intrinsic inconsistency
of fuzzy logic. Although fuzzy logic is intended to allow an indefinite variety
of numerical truth values, the result has proved that only two truth values are
possible inside a standard fuzzy system employing the above four postulates.

12.8.2 WHY FUZZY LOGIC HAS BEEN SUCCESSFUL IN EXPERT
SYSTEMS

Fuzzy logic is an attempt to capture valid patterns of reasoning about
uncertainty. However, there is a lack of common consensus on what types of
uncertainty are captured by fuzzy logic. From practical experience in the
construction of expert systems [Elkan 1993] concluded that fuzzy logic is not
uniformly suitable for reasoning about uncertain evidence.

So where does the magic power of making fuzzy logic a seemingly
successful approach for building expert systems come from? Since heuristic
control is the area of application in which fuzzy logic has been the most
successful (in fact, fuzzy controllers can be implemented by embedded
specialized microprocessors), a careful examination of successful fuzzy
controllers would reveal some secrets of this kind of success. [Elkan 1993]
noticed that there are five important aspects shared by these systems. One
aspect is that they all use the operators of fuzzy logic, such as minimum and
maximum, explicit possibility distributions, and some fuzzy implication
operators (we would point out that one such operator is generalized modus
ponens). However, the use of fuzzy logic is not essential to the success of
fuzzy controllers. The other four properties have nothing to do with the fuzzy
logic but they are vital to practical success, because they make the celebrated
credit assignment problem solvable:

(1) The knowledge base of a typical fuzzy controller consists of less
than 100 rules (often no more than 20 rules are used).

(2) The knowledge entering into fuzzy controllers is structurally
shallow, both statistically and dynamically. It is not the case that
some rules produce conclusions which are then used as premises
in other rules. Statically, rules are organized as a one-level list.
Dynamically, there is no run-time chaining of inferences, which
is very different from most non-fuzzy expert systems.

(3) The knowledge stored in the knowledge base typically reflects
immediate correlations between the inputs and outputs of the
system to be controlled, as opposed to a deep, causal model of
the system.

(4) The numerical parameters of their rules and of their qualitative
input and output modules are tuned in a learning process. The
algorithms used are gradient-descent "hill-climbing" ones that
learn by local optimization.

12.8.3 IMPLICATION TO MAINSTREAM COMPUTATIONAL
INTELLIGENCE

Under the section title of "Recapitulating mainstream AI," [Elkan, 1993]
pointed out that the designers of larger systems based on fuzzy logic are
encountering all the problems of scale already identified in traditional
knowledge-based systems. However, this is not to say building fuzzy expert
systems has made no contribution to the main interests of computational
intelligence itself. As demonstrated in some fuzzy expert systems reported in
the early 1990's, the aim of the knowledge engineering process may no longer
be simply to acquire knowledge from human experts. Rather, the aim is to
develop a theory of the situated performance of the experts: knowledge bases
are constructed to model the beliefs and practices of experts and not any
"objective" truth about underlying physical processes. Thus the expert's
beliefs provide an implicit organization of knowledge about the external
process with which the knowledge-based system is intended to interact. This
sophisticated view provides some new insight on the nature of knowledge
engineering.

SUMMARY
In this chapter we summarized the two most popular approaches of

uncertain reasoning. Bayesian techniques have drawn increasing attention
from researchers and practitioners alike [Haddawy 1999]. A theoretical
inquiry on probabilistic reasoning, including Bayesian belief networks, can be
found in [Gammerman 1996]. Fuzzy set approaches can be considered as a
kind of perturbation around a "standard" situation. A recent discussion on
fuzzy logic is given in [Yen 1999], which introduces the "modern" perspactive
of viewing fuzzy logic as an approximation theory. Interesting applications of
fuzzy logic in business, finance and management can be found in [Bojadziev
and Bojadziev 1997], including a discussion on fuzzy queries from databases.
Integration of fuzzy logic with other approaches, including an integration of

probability theory and fuzzy set theory, has been studied by various
researchers. Another interesting issue is to incorporate fuzzy set theory into
Prolog programming [van Le 1994]. Other techniques related to fuzzy set
theory can be found in [Pedrycz and Gomide 1998, Schneider, Kandel,
Langholz and Chew 1996].

In this chapter we have mainly emphasized some practical issues, although
we have also introduced some theoretical results such as those related to
resolution proof. There are other important results as well. Here we briefly
mention one of them. A family of systems are considered as universal function
approximators if for any function there exists a system from this family that
approximates it to any degree of accuracy. Fuzzy systems are universal
approximators. There is an existence theorem, but it does not reveal how to
construct such a system [Kasabov 1996].

SELF-EXAMINATION QUESTIONS

1. Consider the data mining model described in Section 12.3.4. What does
the causal network look like if the original goal is affected from another
subgoal "state-from?"

2. Write the fuzzy membership function for "fast car."
3. Recall the examples used in Section 12.5.3.3.

(a) Suppose the fact for poor visibility poor' is an S -function 1 - S(1, 2.5,
4) . Write the actual function.
(b) Suppose we use the generalized modus ponens as defined in Section
12.5.3.2, and µH'⊕G (x, y) is defined as

 (1 0.7 0.5 0.2
 1 0.725 0.525 0.225
 1 0.799 0.599 0.299

1 0.922 0.722 0.422
 1 1 1 1)
Calculating the resulting membership function.

4 . Give a brief summary on the differences between probability-based
approaches and fuzzy set approaches.

REFERENCES

AAAI 99, Workshop of Search techniques for problem solving under
uncertainty and incomplete information, AAAI 1999 Spring Symposium
Series.
Berson, A. and Smith, S. J., Data Warehousing, Data Mining, & OLAP,
McGraw-Hill, New York, 1998.
Bojadziev, G. and Bojadziev, M., Fuzzy Logic for Business, Finance, and
Management, World Scientific, Singapore, 1997.

Chen, Z. and Zhu, Q., Query construction for user-guided knowledge
discovery in databases, Information Sciences, 109, 49-64, 1998
Cooper, G. F. and Herskovits, E., A Bayesian method for the induction of
probabilistic networks from data, Machine Learning, 9(4), 309-348, 1994.
Dean, T., Allen, J. and Aloimonos, Y., Artificial Intelligence: Theory and
Practice, Benjamin/Cummings, Redwood City, CA, 1995.
Dubois, C., Lang, J. and Prade, H., Advances in automated reasoning using
possibilistic logic, in Kandel, A. (ed.), Fuzzy Expert Systems, CRC Press,
Boca Raton, FL, pp. 125-134, 1991.
Durkin, J. Expert Systems: Design and Development, Macmillan Publishing
Company, New York, 1994.
Elkan, C., The paradoxical success of fuzzy logic, Proceedings 11th AAAI
(AAAI ’93), 698-703, 1993.
Gammerman, A. (ed.), Computational Learning and Probabilistic
Reasoning, John Wiley, Chichester, UK,1996.
Giarratano J. and Riley, G., Expert Systems: Principles and Programming
(3rd ed.), PWS Publisher, Boston, 1998.
Haddawy, P., An overview of some recent devlopments in Bayesian
problem-solving techniques, AI Magazine, 20(2), 11-20, 1999.
Heckerman, D., Bayesian networks for data mining, Data Mining and
Knowledge Discovery, 1, 79-119, 1997.
Kasabov, N. K., Foundation of Neural Networks, Fuzzy Systems, and
Knowledge Engineering, MIT Press, Cambridge, MA, 1996.
McCarthy, J., Circumscription -- A form of nonmonotonic reasoing,
Artificial Intelligence, 13, 1980.
Neapolitan, R. E., Probabilistic Reasoning in Expert Systems: Theory and
Algorithms, Wiley, New York, 1990.
Orchard, R. A., FuzzyCLIPS Version 6.04A User’s Guide, Integrated
Reasoning Institute for Information Technology, National Research Council
Canada, 1998.
Pearl, J., Probabilistic Reasoning in Intelligent System (2nd printing), Morgan
Kaufmann, San Francisco, 1991.
Pedrycz W. and Gomide, F., An Introduction to Fuzzy Sets, Cambridge, MIT Press,
Cambridge, MA, 1998.
Poole, D., Mackworth, A., and Goebel, R., Computational Intelligence: A
Logical Approach, Oxford University Press, New York, 1998.
Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach,
Prentice Hall, Englewood Cliffs, NJ, 1995.
Schneider, M., Kandel, A. Langholz, G. and Chew, G., Fuzzy Expert
System Tools, John Wiley, New York, 1996.
Van Le, T., Fuzzy programming in Prolog, AI Expert, 31-36, July 1994.
Weiss, M. A., Data Structures and Algorithm Analysis in C++ (2nd ed.),
Benjamin/Cummings, Redwood City, CA, 1998.
Yen, J., Fuzzy logic -- a modern perspective, IEEE Transactions on
Knowledge and Data Engineering, 11(1), 153-165, 1999.

Chapter 13

REDUCTION AND RECONSTRUCTION
APPROACHES FOR UNCERTAIN REASONING

AND DATA MINING

13.1 OVERVIEW
Continuing our discussion on uncertain reasoning, in this chapter we

provide a brief introduction to several alternative approaches not presented in
the last chapter. These methods illustrate the variety involved in uncertain
reasoning. This chapter is motivated from the relationship between uncertainty
and data mining. We examine two aspects related to uncertainty, namely, the
reconstruction-reduction duality. Since this duality is rooted in fuzzy set
theory, our discussion will start from a brief review of fuzzy set theory (as
presented in Chapter 12) from this perspective. We then present the reduction-
reconstruction duality in a more general form. These two approaches are
illustrated by K-systems theory and rough set theory. Due to the increasing
popularity of rough set theory, we discuss this approach in some detail.

13.2 THE REDUCTION-RECONSTRUCTION DUALITY

13.2.1 REDUCTION AND RECONSTRUCTION ASPECTS IN FUZZY
SET THEORY

First, we take a look on the reductive and reconstructive feature of fuzzy set
theory itself. On the one hand, linguistic variables and their values as
discussed in Chapter 12 clearly indicate how information can be reduced by
using the concept of fuzziness. For example, persons with different heights
can be concisely represented using the same fuzzy membership function "tall."
On the other hand, fuzzy set theory is also reconstructive, although people
usually do not emphasize this. [Zadeh 1977] defined the type hierarchy of
fuzzy sets. At the bottom of this hierarchy, the elementary type 1 fuzzy subset
F of a universe X is defined by giving numeric values for its membership
function in the closed interval of real numbers from 0 to 1:

µF: X → [0, 1].

For N > 1, a type N fuzzy subset is recursively defined by a mapping for µF

from a universe to the set of fuzzy subsets of type N-1. This kind of hierarchy
can be combined with the theory of information granulation as emphasized
recently by [Zadeh 1997]. He noticed the hierarchical levels involved in
information: object, granule, and attribute. For example, one may notice the
following hierarchy:

head → nose + hair + ...

hair → length + color + texture + ...

length → long + short + ...

We have the following comments in regard to these two hierarchies. When
these two hierarchies are put together, they provide a constructive power. This
is because the fuzziness captured in lower type (starting from the ground level
of type 1) can be propagated to higher level in the type hierarchy, and from
small granule (i.e., attribute) to higher granule (e.g., object) in the granularity
hierarchy. This process can continue forever or stop at any time using any
stopping rule or criterion (e.g., as soon as the goal is reached or the user
satisfaction is met). Furthermore, if we view this constructive process to
reveal the existing uncertainty of a given problem (or system), then in this
sense we can say that the fuzzy set approach is reconstructive.

Next, we take a look at reduction and reconstruction in fuzzy expert
systems. In the context of rule-based fuzzy expert systems, [Di Nola, Pedrycz
and Sessa 1991] noticed that certain antecedents in the rules are difficult to
evaluate by the user and/or the reliability of this information is rather low. It is
reasonable to reduce the condition space by taking only a few conditions
(features) to form a condition subspace. These are the most significant ones
considered for an action point of view. Such a procedure of reduction may
lead to a slight modification of fuzzy actions, but it is an essential price to pay.
The main point, while the most irrelevant conditions are eliminated, is to
achieve a certain balance between imposed changes of the action parts and an
achieved reasonable size of the condition space. Notice, however, that the
fuzzy relation equation of the reasoning scheme should be modified with
regard to the original one, where the entire original condition space has been
utilized. This problem will be called a reduction problem of the knowledge
base. Consequently, there is a reconstruction problem which is concerned with
an overall picture of how the information coming from the reduced knowledge
base can be combined, bearing in mind the influence of different levels of
difficulty to get reliable results.

I n su mm ary , r ed uctio n an d r econ s tr uctio n ar e a p air o f clo sely related as pects
in fu zzy s et th eo ry . I n the n ex t two su bs ectio ns , w e will tak e a lo o k at ho w th ese
asp ects ar e inter related in d if f er en t app ro ach es to d ata m in ing .

13.2.2 RECONSTRUCTION AND DATA MINING

In order to understand reconstruction-driven approaches to data mining, we
should first take a look at a general discussion on reconstruction from a
system theoretic perspective. System reconstruction [Klir 1985] refers to the
following problem: given a behavior system, viewed as an overall system,
determine which sets of its subsystems are adequate for reconstructing the
given system with an acceptable degree of approximation, solely from the
information contained in the subsystems.

The problem of data mining can be re-examined from a system-theoretic
perspective. In fact, the collection of data stored in a database describes a

system. The task of system reconstruction and the task of knowledge
discovery from databases (which can be viewed as systems) are of course
quite different. The relationship between these two seems to be recovery of
existing system versus discovery of previously unknown knowledge.
However, discovery of something which was unknown does not necessarily
mean that thing did not exist before it was discovered. Take a look at the case
of archeology. Being the science of reconstructing an ancient society,
archeolo gy d o es n ot cr eate an y thing w h ich is ph ys ically n ew , b ut b r eakthr o ug hs
mad e in archeology do bring new k nowled ge to modern society. Similarly,
system reconstruction may reveal important, interesting and previously hidden
features of the system. It is thus reasonable for us to hope that reconstruction
of the system could be an effective process for the discovery of new
knowledge.

System reconstruction and data mining share some common concerns, as
well as some techniques utilized, such as statistics and information theory.
Significant differences also exist between them. For example,
reconstructability analysis requires that subsystems should adequately
reconstruct the given system with an acceptable degree of approximation; this
requirement is much more rigorous than the criteria used for determining an
acceptable result in data mining, where heuristic rules are often deemed as
sufficient. The theory developed for system reconstruction may not always be
useful to data mining, and some data mining problems may not (or need not)
be treated as reconstruction problems. Nevertheless, reconstructability
analysis can benefit data mining due to some common interests and common
techniques. Since reconstructability analysis is usually more rigorous than
data mining, it may help to alleviate some problems faced by data mining
community as mentioned in the beginning of the next section.

13.3 SOME KEY IDEAS OF K-SYSTEMS THEORY AND
ROUGH SET THEORY

13.3.1 RECONSTRUCTABILITY ANALYSIS USING K-SYSTEMS
THEORY

A direct descendent of the general reconstructability analysis theory is Klir-
Systems theory or K-system theory [Jones, 1985,1986], which makes use of
information theory to carry out reconstructability analysis of general
multivariate data. Although K-systems theory is not very well-known, it
employs the very idea of reconstruction to recover the nature of the system
using a reduced set of variables with their qualitative values [Chen, 1997a,
1997b]. If we visualize the original data set as a huge flat table including
attributes as columns and all instances as rows containing concrete data in
various domains, an interactive execution of the K-system analysis will result
in sub-tables each consisting of much fewer number of columns and rows. The
number of columns is reduced because less important attributes have been

removed. The number of rows is reduced because only "typical" tuples remain
and also because individual values in the tuples are replaced by intervals of
the values representing the quality of data (for example, temperatures falling
in –40°C to -200°C will be considered as very low, -20°C to 0°C as low, etc.).
As a consequence of this process, the tuples in the original data set have lost
their identity; in other words, although each factor can be considered as a
representative of a cluster (or a subset) of the original data elements, we do
not know (and we do not need to know) which data elements go to which
cluster (namely, represented by which factor). Using this way, K-system
analysis finds the factors that control and describe the behavior of the data (a
factor, also called a substate, is a subset of variables each having its own
values), thus reconstructing systems at the factor level. Since an emphasis of
K-systems theory is on the interaction of variables, it has the potential of
being a powerful tool for data mining.

13.3.2 REDUCTION-DRIVEN APPROACH IN ROUGH SET THEORY

As already indicated earlier, K-systems theory is mainly driven by
considerations from system reconstruction: the system is reconstructed by
factors representing reduced information. In contrast, the rough set theory
approach [Pawlak 1991] is mainly driven by considerations more directly
related to reduction. Some key ideas of this approach, as well as the way these
ideas are used for data mining (or more generally, for machine learning), are
sketched below (following the presentation of [Ziarko, 1991]).

Due to its reduction nature, rough set theory sets an emphasis on studying
decision tables (which are flat tables containing attributes and decisions as
columns and actual data elements as rows). For the rows, the rough set theory
employs the notion of indiscernibility class to group similar tuples (rows)
together; while for the columns, it employs the notion of indispensable
attributes to identify the significance of attributes.

The bottom line of this approach is the analysis of limits of discernibility of
a subset of objects belonging to the domain. For any set X, we define its lower
approximation (which is a union of X's all containing subsets) and upper
approximation (which is a union of all subsets in which X is contained.
Furthermore, based on these concepts, the dependency of attributes can also
be defined. An issue in the analysis of dependencies among attributes is the
identification and information-preserving reduction of redundant conditions.
The next important concept is the minimal set of attributes: each minimal set
can be perceived as an alternative group of attributes that could be used to
replace all available attributes. The main challenge is thus how to select an
optimal reduct. In some practical problems, it is often necessary to find the
subset of attributes contained in all reducts, if one exits. The attributes
contained in all reducts are also contained in the reduct that represents the real
cause of a cause-effect relationship. The intersection of all minimal sets is
called the core.

When the rough set approach is used in data mining, production rules (of
the "if...then" format) can be induced from the reduced set of condition and
decision attributes. A unique feature (and a particular strength) of rough set
approach is that unlike many other approaches in machine learning, it allows
inconsistency and can deal with inconsistency in a very natural way. Roughly
speaking, the computation involved in the lower approximation will produce
certain rules while the computation involved in the upper approximation will
produce possible rules.

13.3.3 K-SYSTEMS THEORY VERSUS ROUGH SET THEORY

The reconstruction-driven approach and the reduction-driven approach as
exemplified by K-systems theory and rough set theory have different features,
but they also share some common concerns. For example, the factors in K-
system analysis play the similar role of reducts as in rough set theory. As a
brief summary of our comparison, some features are shown in Table 13.1.

Table 13.1 Comparison of two approaches
Feature K-systems theory Rough sets
Key idea used Reconstruction Reduction
Sets are constructed
By set operations only?

No Yes

Sets are constructed using
Information theory?

Yes No

Key notions used for
Knowledge discovery

Control factors Reducts/Core

Understanding different features in these approaches are important because
they can help us to determine when (i.e., under which conditions) to use which
approach. For example, if measures as required in information theory are not
available, a reconstructive approach such as K-systems theory may not be
appropriate. In some other cases, when constructing equivalence classes are
not a natural choice, a reductive approach (such as rough set theory) may not
be suitable, and a reconstructive approach can be tried.

Having provided this general picture of the two approaches, in the next two
sections, we will take a closer look on each of them.

13.4 ROUGH SETS APPROACH

13.4.1 BASIC IDEA OF ROUGH SETS

The starting point of using rough sets to perform uncertain reasoning is
somewhat different from what we have seen in reasoning using probability
theory or fuzzy set theory. Both of these two approaches are intended to deal
with certain kind of uncertainty: probability theory deals with randomness
while fuzzy set theory deals with vagueness. For rough sets, the uncertainty is
due to its own method used: Suppose we are interested in set X; instead of
investing X itself, we invest its two sets called approximations and use these

approximations to characterize X. Here an analogy may be helpful. Consider a
circle with radius r. We know the area A bounded by this circle can be
calculated using the formula A = πr2. But at the ancient time, this formula was
not known. How to calculate the area? We can use two polygons; one is
enclosed in the circle while the other bounds the circle from the outside. Since
areas of polygons are much easier to calculate, we can use the area of enclosed
polygon A in and the area of the polygon bounded from outside Aout to
approximate the area in the circle. Apparently we have Ain < A < Aout. Here Ain

serves as the lower approximation of A (since it is smaller than A), while Aout

serves as the upper approximation of A. Of course using approximations
would introduce some kind of error (which is a kind of uncertainty), but this
uncertainty is compensated by the well-known features of the approximations.
In addition, using approximations makes rough set approach very flexible in
handling inconsistent data. So far we have assumed knowledge bases contain
only consistent data (in fact, detecting inconsistency has been used as the basis
of resolution proof). Rough sets approach thus has widely broadened the
horizon of reasoning under uncertainty.

13.4.2 TERMINOLOGY

We give the following working definitions. Examples for these definitions
are provided in 13.2.2, as well as in the remaining part of Section 13.2.

First, we introduce a popular concept: A decision table is a flat table
containing attributes and decisions as columns, and actual data elements as
rows. A decision table consists of several condition attributes, as well as one
or more decision variables. An important issue in decision tables is to
determine how the condition attributes affect the decision attributes. A relation
as discussed in Chapter 4 can be considered as a decision table, but these two
concepts are concerned with different aspects of a flat table.

Next, we introduce two important concepts related to reduction, one is
related to reduction of rows, and the other one is related to reduction of
columns.

• Indiscernibility class: Tuples (rows) with certain properties grouped
together.

• Indispensable attribute: It is a significant attribute.
 The next group of definitions are related to the concept of approximation
space A, which is an ordered pair A = (U, R), where U is the universe (a
nonempty set), while R an indiscernibility relation (which is an equivalence
relation) on U. Rough set theory employs the concept of equivalent class to
reduce the information. The following definitions are related to this:

• [x]R: for any element of U, the equivalence class of R in which x is
contained.

• Elementary sets in A: equivalence classes of R.
• Definable set in A: any finite union of elementary sets in A.

The following two concepts of rough sets theory have already been
introduced before, and here are more formal definitions:

• Lower approximation of X in A is the greatest definable set in A that
is contained in X: RX = {x ∈ U | [x]R ⊆ X}.

• Upper approximation of X in A is the least definable set in A
containing X: RX = {x ∈ U | [x]R ∩ X ≠ ∅}.

Note that for a set X, it is defined in terms of definable sets in A by using RX
andRX. Thus we can decide if x is in X on the basis of a definable set in A
rather than on the basis of X; we deal with and RX andRX instead of X.)
From the above definitions, we may define a rough set as the family of all
subsets of U having the same lower and upper approximations in A.

From the definitions of lower approximation and upper approximation, we
can also define the notions of certainly in, and possibly in: If x ∈U, then:

x is certainly in X ⇔ x ∈ RX
x is possibly in X ⇔ x ∈RX

We can also define the following rough measures of a set:
Quality of lower approximation of X by P: γP(X) = |PX|/|U|
Quality of upper approximation of X by P: γP(X) = |PX|/|U|.

Each kind of quality can be considered as a kind of relative frequency.
The following are some important properties of rough sets:

RX ⊆ X ⊆RX

RU = U = RU

R∅ = ∅ = R∅
— R(X∪ Y) ⊇ R(X) ∪ R(Y)

R(X∪ Y) ⊇R(X) ∪R(Y)

 — R(X ∩ Y) ⊇ R(X) ∩ R(Y)

R(X ∩ Y) ⊇R(X) ∩R(Y)

— R(X - Y) ⊇ R(X) - R(Y)

R (X - Y) ⊇R(X) -R(Y)

13.4.3 AN EXAMPLE
We use an example to illustrate the basics of rough set approach. Consider

the decision table in Table 13.2 where a, b, c are attributes while d is the
decision variable.

Table 13.2 A decision table
Row id A b C d
x1
x2
x3
x4
x5
x6
x7
x8

0
0
0
1
1
2
2
2

3
4
4
4
4
4
4
5

0
1
1
1
1
1
1
2

0
0
0
1
0
1
0
1

Let

Q = {a, b, c, d}
P = {a, b, c}

The tuples in the decision table are labeled as x1, x2, x3, x4, x5, x6, x7, x8, and we
have

U = {x1, x2, x3, x4, x5, x6, x7, x8}
Partition induced from equivalence relation P is:

P* = {{x1}, {x2, x3}, {x4, x5}, {x6, x7}, {x8}}
Note that x2 and x3 are in the same equivalent class, because they have same

values in all attributes a, b, c.
N o w c o n s id e r X = { x 1 , x2 , x3 , x5 , x7 . } . T h e l o w e r a p p r o x i m a t io n o f X i n A

= (U, R) is RX = {x1, x2, x3}. One rough measure is γP(X) = 3/8. The upper
approximation of X in A = (U, R) is RX = {x1, x2, x3, x4, x5, x6, x7}. Another
rough measure is γP(X) = 7/8.

Figure 13.1 explains the meaning of these two approximations. The
elements in set X are in bold face. The figure indicates that the lower
approximation consists of subsets with all their elements in X, while the upper
approximation consists of subsets with any elements in X.

Figure 13.1 A simple example
The rough set is:

{{x1, x2, x3, x4, x6}, {x1, x2, x3, x4, x7}, {x1, x2, x3, x5, x6}, {x1, x2, x3, x5, x7}}.
We now use a different example to present another way to view a rough set.

Consider a 30-element universe U = {x1,…, x30} as shown in Figure 13.2.

Figure 13.2 Another simple example

x1

x2 x3

x8

x4 x5
x6 x7

x2 x3

X15 X16 X17 X18 X19 X20

 X9

 X1 X11

 X3 X10

X21

 X2 X4

 X12

 X5 X6 X7

 X13 X14

 X22

 X8

X23

 X24 X25 X26 X27 X28 X29 X30

Suppose each equivalent class in the partion induced from equivalence
relation P is depicted as a cell in the figure. For example, {x1, x2} is an
equivalent class and {x1, x13} is another equivalent class. Now consider X =
{x2, x3, x4, x6, x7, x10, x12, x13, x14}. In Figure 13.2, all the elements involved in
X are circled in big oval. The lower approximation of X consists of all {x1,
x13} and {x12, x14}.

13.4.4 RULE INDUCTION USING ROUGH SET APPROACH

We use the following example to illustrate rule induction using rough set
approach. Suppose we are given the decision table as shown in Table 13.3.

Table 13.3 A decision table
T D M H I
0
1
2
3
4
5
6
7
8
9

n
n
s
s
s
h
h
h
h
h

a
a
a
b
b
a
b
b
b
b

a
b
b
a
a
a
a
a
b
b

a
b
b
a
a
a
a
a
b
b

a
a
b
a
b
a
a
b
b
b

Partition generated by decision (I) is:
X = {{0, 1, 3, 5, 6}, {2, 4, 7, 8, 9}}

Partition generated by attributes is:
{T, D, H, M} = {T, D, H} = {{0}, {1}, {2}, {3,4}, {5}, {6,7}, {8,9}}

The set P of attributes is the reduct (or covering) of another set Q of
attributes if P is minimal and the indiscernibility relations, defined by P and Q
are the same. Here the set {T, D, H} is a reduct by removing M, which has no
effect on the partition.

For X1 = {0, 1, 3, 5, 6 }:
 Since {0}⊆ X1, {1} ⊆ X1, {5} ⊆ X1, we have PX1 = {0} ∪ {1}
∪{5} = {0, 1, 5}
 Since X1 ⊆ {0} ∪ 1} ∪ {3,4} ∪ {5} ∪ {6,7} = {0, 1, 3, 4, 5, 6, 7},
we havePX1 = {0, 1, 3, 4, 5, 6, 7}.

For X2 = {2, 4, 7, 8, 9 }:
Since {0 }⊆ X2, {8, 9} ⊆ X2, we have PX2 = {2} ∪ {8,9} = {2, 8, 9}.
Since X2 ⊆ {2} ∪ {3, 4} ∪ {6, 7} ∪ {8,9} = {2, 3, 4, 6, 7, 8, 9}, we
havePX2 = {2, 3, 4, 6, 7, 8, 9}.

Certain rules from set PX1 = {0, 1, 5} are:
(T = n) ∧ (D = a) ∧ (H = a) → I = a

(T = n) ∧ (D = b) ∧ (H = a) → I = a

(T = n) ∧ (D = b) ∧ (H = a) → I = a

(T = h) ∧ (D = a) ∧ (H = a) → I = a

After simplification, the first two rules become:

 (T = n) ∧ (H = a) → I = a

Certain rules after simplification from set PX2 = {2, 8, 9} are:

 (T = n) ∧ (H = b) → I = b

Possible rules after simplification from PX1 = {0, 1, 3, 4, 5, 6, 7} are:

 T = n → I = a
 H = a → I = a

Possible rules after simplification from PX2 = {2, 3, 4, 5, 6, 7, 8,9} are:

 T = s → I = b
 D = b → I = b

13.4.5 APPLICATIONS OF ROUGH SETS

We consider the case of generating multiple knowledge bases using reducts
and decision matrix. We use this example to illustrate the unique way rough
sets theory can contribute to knowledge discovery, particularly its strength of
dealing with inconsistency -- an ability which is usually lacking in many
approaches (including logic-based approaches). Technical details can be found
in the reference [Lin and Cercone 1997]. Adding a novice is probably
counterproductive and adding an expert whose knowledge is too similar to
some other members only give more importance to the previous expert. The
multiple knowledge bases concept matches the concept of reducts in rough set
theory. One reduct table can be obtained from a knowledge representation
system by removing those attributes witch are not in the reduct without losing
any essential information, thus simplifying the knowledge representation
scheme. Using different reducts of the knowledge, we can derive different
knowledge bases, thus forming multiple knowledge bases. The need for
multiple knowledge bases is well-justified. For example, a patient may want to
consider the second opinion from physicians about her health problem.

The skeleton of the main algorithm of generating multiple knowledge bases
can be stated as follows.

1. Remove superfluous attributes from the decision table;
2. Compute the minimal decision rules through decision matrices;
3. Compute a set of reducts which cover all the indispensable attributes

in the decision table (see below);
4. Group the minimal decision rules to the corresponding reducts to

form a multiple knowledge base.
The algorithm for computing multiple reducts can be stated as follows. It

starts with the core attribute (CO). The core is defined as the intersection of all
reducts and can be computed from the discernibility matrix (which is similar
to the decision matrix with certain details removed). The core attributes are
those entries in the discernibility matrix which have only one attribute.

13.5 K-SYSTEMS THEORY
In Section 13.3 we briefly introduced K-systems theory as a tool for

reconstructability analysis. In this section we provide some more detail of this
approach.

We now take a look at the methodological implication of the K-systems
theory. One interesting aspect we can point out is related to the way of
discretizing data. We will not compare different discretization methods here;
rather, we want to point out the underlying thought used to discretize data, and
surprisingly, there is a striking similarity between K-systems theory and
Lebesgue integral.

In the realm of system reconstruction, Klir-systems theory or K-system
theory [Jones 1985, 1986] makes use of information theory to carry out
reconstructability analysis of general multivariate data. It finds the factors that
control and describe the behavior of the data, thus reconstructing systems at
the factor level. (A factor, also called a substate, is a subset of variables each
having its own values.) Since an emphasis of K-systems theory is on the
interaction of variables, it has the potential of being a powerful tool for data
mining.

Consider the variable Y and other variables x1, x2, ..., xn which are
associated through the parameter t

Y = y(t),
x1 = x1 (t),

xn = xn(t).
Observational data have been collected to form the data set to be used for data
mining. The system function Y will be referred to as a variable dependent on
x1, x2, ..., xn , but this kind of dependency does not necessarily imply causal
relationship. Another note to be made here is that we do not assume all xi's (i =
1, 2, ..., n) are independent to each other.

In the problem presented above, the user's intention is to find the
relationship between Y and one or more xi' s, rather than the interaction among
xi s. K-systems theory is suitable for goal-driven data mining because of its
flexibility in dealing with interaction of data. The concept of goal-driven can
be realized through Lebesgue discretization as described below (for a more
detailed discussion, see [Chen 1994]). For the function Y = y(t) as defined
above, instead of discretizing t into subsections, we discretize Y into
subsections. All xi' s are also dissected according to the intervals of t
determined by Lebesgue discretization on Y. An intuitive explanation of
performing discretization in this manner is that, starting from the values of the
dependent variable (which is similar to the decision attribute in the rough set
approach), we look for explanations of these values in terms of other variables
(namely, condition variables). K-systems theory can then be applied to
analyze the relationship between subsections of y values with corresponding
values of xi' s. Note that the name of Lebesgue discretization is from Lebesgue
integral, where a similar discretization technique was used. Therefore, the

concept of Lebesgue discretization is another example indicating the benefit
of cross-domain analysis. We are interested in mining the knowledge about
intrinsic relationships between variables implied from the data rather than the
quantitative information itself. A natural way of representing intrinsic
relationships of data is providing explanation by associating the quality
(instead of the quantity) of the dependent variable and the quality (instead of
the quantity) of other variables. This consideration has led to the concept of
qualitative production rules. In other words, we apply the idea of qualitative
reasoning as discussed in artificial intelligence. The basic idea is to convert
continuous data into discrete data (e.g., through clustering) so that qualitative
rules can be constructed.

The main steps involved in applying K-systems theory can be found in
[Chen, 1994]. Briefly, the algorithm starts with some initial variable
combinations chosen by using some domain-specific heuristics. K-systems
analysis is then carried out and is used to refine the variable combination.

A case study of using K-systems analysis was also reported and analyzed in
[Chen 1994]. The task of that study was to examine the relationship between
the catch number (the dependent variable or system function) for brown
shrimp and various environmental variables. Values for more than 20
variables were collected with time (which is treated as parameter t); the
purpose of the study was to find how the most influential environment
variables affect the value of catch (the system function). Three variables have
been determined for retention: lunar, level, and rain. The controlling factors
that capture the most important features of the system indicate the importance
of qualities of each variable. Two clusters sufficiently captured the
information contained in variable rain while both lunar and level required
three clusters; overall, there are 3 * 3 * 2 = 18 factors representing the quality
of variable combinations. Applying K-systems analysis is able to provide
results whose meaning is equivalent to the following heuristic rules:

 If lunar = High and rain = Low and level = High
 then Predicted catch = rank-2 (the second highest catch).
 If lunar = Middle and rain = Low and level = Low
 then Predicted catch = rank-18 (the lowest catch).

We have discussed the relationship between reconstructability analysis and
data mining. From an epistemological perspective, a common base for both
data mining and reconstru ctability an alysis is th e role of in ductio n. [Klir, 198 9]
discussed inductive modeling in system science. He also felt that one of his
contributions to inductive modelling is the set of procedures he developed for
the reconstruction problem (including the discovery of the "reconstruction
principle of novelty production").

A good understanding on the nature of uncertainty will benefit the
development of decision support systems. For this purpose, we take a unique
perspective by examining the relationship between uncertainty and data
mining. We study the dual features in dealing with uncertainty, namely,
reconstruction and reduction. Furthermore, the reconstruction-driven approach
for data mining is illustrated by K-systems theory, and the reduction-driven

approach is illustrated by rough set theory. Some differences between these
two approaches are addressed, and their implication on applications is also
briefly discussed.

In other words, the study of uncertainty can be viewed as a study of
discovering hidden "true" systems. The study of data mining will thus enhance
our understanding of uncertainty, which in turn will benefit the development
of decision support systems.

SUMMARY

Uncertainty in knowledge-based systems can be studied at different levels:
• at the level of domain knowledge,
• at the level of control knowledge,
• at the level of control knowledge combined with user-system interaction,

as well as
• other levels.

In this chapter we mainly address uncertainty at the level of domain
knowledge. Started with the recent progress in data mining, we have examined
some basic issues related to the nature of uncertainty. This discussion will
benefit the construction of decision support systems. In particular, we have
made our contributions in the following two issues:
• A new way of studying uncertainty. The starting point is that the task of

data mining in a system and the task of dealing with uncertainty of the
system, in a large degree, can be viewed as two sides of the same coin;
therefore, studying one of these two issues should benefit the other.

• The duality of reconstruction and reduction approaches in uncertainty as
exemplified by K-systems theory and rough set theory. In addition to
connection between uncertainty and data mining, two approaches in
dealing with uncertainty can be distinguished. Fuzzy set theory takes a
reconstruction approach, while the more recent rough set theory takes a
reduction approach. We also connect reconstruction approach with the
reconstruction analysis of system theory, pointing out how k-systems
theory can contribute to both the study of uncertainty and data mining.

To summarize our discussion in Chapters 12 and 13, we notice there is a
close relationship between uncertain reasoning on the one hand, and machine
learning/data mining on the other. Therefore, studying uncertain reasoning
techniques not only gives us a chance of learning useful techniques for
decision making, but also encourages an integrated way of thinking. A more
systematic discussion on integrated problem solving and decision making is to
be presented in the next chapter.

SELF-EXAMINATION QUESTIONS
1. Consider the set of data shown in Table 13.4. Perform a conventional

discretization (namely, discretize independent variable X) using interval
size = 10 (namely, from 1 to 10, then 11 to 20, etc.) Then perform a
Lebesgue discretization also with interval size = 10. You may then
change the size of the interval. What is your observation? What kind of
knowledge pattern can be "discovered?" Compare Lebesgue discretization
and regular discretization in this discovery process. (You may plot the
data first.)

 Table 13.4 Data set for discretization
X Y
1
5
12
17
24
25
33
38
41
48

63
43
33
61
28
57
55
27
42
28

2. Suppose all values in Table 13.2 are increased by 10.
(a) If we apply the rough set approach as described in Section 13.4.3,

will the participation obtained there be changed? Why or why not?
(b) Find certain rules and possible rules from Table 13.2 (after the

revision indicated in part a).

REFERENCES
Chen, Z., Qualitative reasoning for system reconstruction using Lebesgue
discretization, International Journal of System Sciences., 25(12), 2329-2337,
1994.
Chen, Z., Understanding uncertainty through data mining: reconstruction
versus reduction, Proceedings of 5th European Congress on Intelligent
Techniques and Soft Computing (EUFIT' 97), pp. 1611-1615, 1997a.
Chen, Z., K-systems theory for goal-driven data mining, Advances in Systems
Science and Applications, 40-43, Special issue, 1997b.
Di Nola, A., Pedrycz, W. and Sessa, S., Reduction procedures for rule-based
expert systems as a tool for studies of properties of expert's knowledge, Chap.
5 in Kandel, A. (ed.), Fuzzy Expert Systems, pp. 69-79, 1991.
Jones, B. Reconstructability considerations with arbitrary data. Int. J. General
Sys, 11, 143-151, 1985.

Jones, B. K-systems versus classical multivariate systems. Int. J. General
Sys., 12, 1-6, 1986.
Klir, G., Architecture of General Systems Problem Solving, Plenum, New
York, 1985.
Klir, G., System profile: The emergence of systems science, Systems
Research, 5(2), 145-156, 1989.
Lin, T. Y. and Cercone, N. (eds.), Rough Sets and Data Mining: analysis for
Imprecise Data, Kluwer, Boston, MA, 1997.
Pawlak, Z. Rough Sets, Kluwer, Dordrecht, 1991.
Piatetsky-Shapiro, G. and Frawley, W. (eds.), Knowledge Discovery in
Databases. AAAI/MIT Press, Menlo Park, CA, 1991.
Zadeh, L., Fuzzy sets. in Belzer, J. (ed.), Encyclopedia of Computer Science
and Technology, Marcel Dekker, New York 1977.
Zadeh, L., Invited talk given in the Second IIGSS Workshop, San Marcos,
TX, Jan. 10, 1997.
Ziarko, W., The discovery, analysis, and representation of data dependencies
in databases. Chap. 11 in Piatetsky-Shapiro, G. and Frawley, W. (eds.)
Knowledge Discovery in Databases. AAAI/MIT Press, Menlo Parl, CA, pp.
195-209, 1991.

Chapter 14

TOWARD INTEGRATED HEURISTIC DECISION
MAKING

14.1 OVERVIEW

In this book we have discussed various computational intelligence methods
for decision making. It is important to keep in mind that intelligent agents
should use these methods in an integrated manner. In this last chapter, we
summarize the whole book from two perspectives. In Sections 14.2 and 14.3,
we summarize materials presented in this book, with emphasis on integration.
A discussion of these issues provides a cross-domain analysis of various
technical methods; here the term cross-domain analysis refers to analyze two
or more knowledge domains to find some commonality among these domains.
In Section 14.4 we discuss integrated problem solving techniques by
examining several "meta" issues in decision support. The actual meaning of
the prefix "meta" vary in different contexts, but in general "meta-X" refers to
"X about X" (for example, a meta-rule refers to a rule about rules). Therefore,
meta-X, as the second order of X, implies some kind of control over the use of
X. This kind of control knowledge provides the power of an effective use of
the underlying knowledge.

14.2 INTEGRATED PROBLEM SOLVING

As indicated in the Preface and Chapter 1, this book is aimed to present
some of the most important techniques of computational intelligence which
are useful for decision support. Materials are selected to be representative in
this field. Rather than a miscellaneous collection of a "technique show,"
materials are presented in a manner to foster an integrated way of scientific
thinking. Users are reminded to compare these techniques as well as different
perspectives behind these techniques. To understand where these approaches
are from is important to reveal some important common features behind
scientific thinking. Although it is difficult to predict where future techniques
will go, an in-depth study of existing techniques will help readers be prepared
to deal with technical challenges to be encountered in the future. Some
techniques may fade away (or absorbed into newer techniques), but many key
ideas will still last. It is thus important to understand the underlying
philosophy.

This last chapter (Chapter 14) complements earlier chapters in that it
provides a "cross-domain" study of some specific features of computational
intelligence that are important to decision support. The emphasis here is

integration in the problem solving process. Note that we are not intended to
provide a philosophical discussion nor a complete overview of this topic; the
reader is encouraged to apply (or revise, or criticize) what is discussed below
to analyze her own problems. Also be cautious: we use the term
"integration" in a positive feeling. Integration is distinguished from simple
combination, which is not always good (because different methods may
conflict each other).

As for integration of problem solving, there are several levels of the
integration itself:
• Integrated tools: Here integration is taken care by the commercial tools

themselves. This level of integration is convenient for the users, but it
offers little flexibility and controllability to the users. This kind of
integration is important, but is not the focus of this book.

• Integrated use of existing methods: Here the methods have been
developed, but the task of integration is left to the user. So a user may
have a combined use of, say, probability theory and rough set theory, so
long as these techniques are appropriate for the problem solving. For
example, the first stage of the problem solving can be carried by
incorporating probability theory, while the result is further processed
using rough set theory to identify useful rules.

• Integrated thinking: This is the most advanced level of integration, and is
the most important idea deserving endorsement. Integrated thinking refers
to an ability of problem solving guided by appropriate heuristics to
employ existing techniques or to develop new methods. Integrated
thinking thus requires a good understanding of existing techniques, but
does not stop there. [Bienkowski 1998] characterized an agent as "rethink
thinking: autonomy, environmental interaction, and reaction." Integrated
thinking is the most important aspect of this rethinking.

Below we summarize the relationship of some major categories of
techniques presented in this book, which is depicted in Figure 14.1. The figure
is produced following the criteria given in [Raeth 1998]: perfect knowledge,
accurate results, using algorithms or heuristics, and well-structured problems.
Overall, these criteria characterize how adaptive a technique is for decision
support. At the low end of this spectrum are numerical methods (we do not
count rounding errors), as well as data and information retrieval techniques.
Expert systems signal a main departure from these traditional methods, and
reasoning using probability theory or fuzzy logic has further enhanced the
adaptive problem solving ability. Closely related to fuzzy logic are neural
networks, which have promoted unstructured problem solving abilities.
Finally, at the high end of this spectrum are evolutionary programming, with
genetic algorithms as a major sub-category. (Note that in Figure 14.1 we do
not treat symbolic reasoning or any specific knowledge representation scheme
as categories, because they are viewed as primitive methods underlying many
techniques.) An integrated use of these methods (along with other methods not
shown here due to space limitation in the figure, such as rough sets and K-

Systems theory, as well as new methods to be developed in the future) would
be the key to successful decision making processes.

Figure 14.1 Adaptive automation spectrum

14.3 HIGH LEVEL HEURISTICS FOR PROBLEM
 SOLVING AND DECISION SUPPORT

14.3.1 A RETURN TO GENERAL PROBLEM SOLVER

An intelligent agent need well-organized knowledge for problem solving
and decision making. How to organize the thoughts? There is a need to find
the invariant (namely, shared features) which can be used to serve as high
level heuristics, a tradition started from G. Polya's How to Solve It [Polya
1957]. This means that we are returning to the general problem solver (as
discussed in Chapter 3), but at a much higher level: They are not aimed to
solve any individual problems, but do shed some light in problem solving
methodology in general. In the remaining part of this section, we will discuss
some of the heuristics while reviewing the materials presented earlier. Note
that the heuristics discussed here are just for illustration purpose only.

14.3.2 SOME HIGH LEVEL HEURISTICS

14.3.2.1 Solving problems by analogical reasoning
In Chapters 7 and 8 we have discussed analogical reasoning. The reason we

review it here is because of its close relationship with cross-domain analysis.
In fact, frequently analogs can be acquired by performing a cross-domain
analysis. In fact, analogical reasoning may be more pervasive than we
realized. Chances are that we may have applied some analogy without
noticing it. Situations also exist when analogical reasoning was not part of the

• Perfect knowledge Imperfect/missing
knowledge

• Exact results Best guess
/approximate results

• Algorithms Heuristics
• Well-structured Unstructured

Numerical
methods

Expert
systems

Fuzzy
logic

Reasoning
using
Probability

Neural
networks

Evolutionary
Programming

Genetic
algorithms

Data/information
retrieval

original problem solving process but was developed later. This may sound
weird, but an "after-thought" analogical thinking may have some pedagogical
value and may contribute important thought for future problem solving. For
example, the method of segmenting data according to function value rather
than the values of independent variables used in K-systems theory (i.e.,
Lebesgue discretization) resembles Lebesgue integral (Chapter 13). This does
not imply that the development of K-systems theory is based on this analogy.
Rather, this analogy is useful for those individuals who had an exposure of
Lebesgue integral before they got acquainted with K-systems theory (as in the
case of this author).

14.3.2.2 Solving a problem using retrospective analysis
Retrospective analysis was discussed in Chapter 8. It can be considered as

an application of cross-domain analysis, but with the time dimension added.
So if you have difficulties in solving a problem, take a look at how similar
problems are solved, not just for problems in different domains, but also for
those problems in the past -- and in a systematic manner. Again, analogy may
play an important role in this process.

14.3.2.3 Cartesian product
In a loose sense, Cartesian product approach for problem solving is just to

combine appropriate elements of problem solving to form one solution. For
example, in recent studies of association rules, [Kuok, Fu and Wong 1998]
discussed mining fuzzy association rules in databases, which is an example of
incorporating fuzzy set theory into data mining. Cartesian products can be
used in a wider sense, however. In most cases of problem solving, the problem
itself is given (although may not be defined accurately). From time to time,
however, there may be some need to identify the problem itself. There are
many advantages of identifying a problem beforehand rather than waiting it to
happen. One way to "generate" a problem is to perform a Cartesian product,
which could be done based on a retrospective analysis. An analysis of
practical needs of course may help to identify problems, but sometimes future
needs can also be identified by examining the functionality of the system. For
example, research problems in expert systems can be studied by enhancing the
functionality of individual components, or consider the interconnections
among these components [Chen 1992b].

14.3.2.4 Solving a problem directly using perturbation
Perturbation is a notion studied in natural science, particularly physics.

Roughly speaking, perturbation in problem solving refers to solving a problem
around a standard. The difference between the current situation and the
standard will be used to modify the solution. The basic idea of problem
solving using fuzzy set theory can be explained using perturbation. Consider
the example used in Chapter 12: "If visibility is poor then driving speed is
slow." The evaluation of this rule is around the standard of "poor," and the
degree of slow is determined by how far the actual degree of "poor" perturbs

away from the standard "poor." Fuzzy logic is of course not the only example
of using perturbation. For example, we may consider the issue of user
modeling (as briefly discussed in Chapter 6). One interesting concept is
perturbation model. In a perturbation model, the user model is assumed to be
similar to the domain model, differing only in certain perturbations to the
domain model. Such a theory may be useful in enhancing system adaptability
[Kass and Finin 1989].

14.3.2.5 Solving a problem indirectly by using approximation
In case that a problem is not easy to solve, it can be converted to some other

forms. Sometimes we would like to use some known features of a solved
problem in the same knowledge domain to deal with a new problem. This
means we can solve a problem indirectly by using approximation. Note that
approximation may take different forms. For example, it could be done
through reduction as in the case of the rough set approach. Alternatively, the
concept of a universal approximizer could be useful.

14.3.2.6 Using abstraction as problem solving infrastracture
Abstraction may be used as an effective vehicle for problem solving.

Abstraction already plays an important role in some heuristics studied so far
(such as in analogical reasoning, although there are different opinions on the
exact role of abstraction in the process of analogical reasoning). Various
aspects in computational intelligence for decision making, such as modeling,
also rely on abstraction. In addition, abstraction is used in Hierarchical
problem solving, where two worlds (a macro one and a micro one) work at
different levels. This is sometimes referred to as Brownian phenonmenon: The
macro level phenomenon may be the cumulative result of numerous
underlying hidden processes. From this discussion has also outgrown the
concept of continuous computational intelligence, where a conjecture is made
which views intelligence as a continuous spectrum evolving from biological
or mental levels [Chen 1993b, 1996c].

14.3.2.7 Inverse problems
In Chapter 8, when we examined useful heuristics in technical invention,

we discussed inverse operators. In addition, some data structures can be
constructed by incorporating of inverse; for example, an inverse graph can be
constructed by having the direction of arcs in a graph reversed [Weiss 1998;
Poole, Mackworth and Goebel 1998]. However, the importance of inverse
goes far beyond individual operators or data structures. In fact, in many cases,
we need to consider inverse problems: In many situations, if we examine a
problem from an opposite direction, we may encounter a seemingly brand new
problem. Solving this new problem may not necessarily provide a
straightforward solution of the original problem. However, with the better
insight of the background information (which is shared by the original
problem and the inverse problem) revealed by the study of the inverse
problem, we may be able to handle the original problem in a better way. In the

following, we briefly examine two inverse problems related to data
warehouses.

First, let use recall that a data warehouse stores consolidated data (usually
materialized views with possible local relations). In order to build a data
warehouse, we need to load and refresh data from various data sources. The
view data lineage problem in a warehousing environment can be considered as
an inverse of this loading/refreshing process. Rather than using known data
sources to build a data warehouse, for a given data item in a materialized
warehouse view, we want to identify the set of source data items that
produced the view item. [Cui, Widom and Wiener 1997] studied this problem
and developed a tool which allows analysts to browse warehouse data, select
view tuples of interest, then "drill-down" to examine the source data that
produced them.

As another example of inverse problem, [Faloutsos, Jagadish and
Sidiropoulos, 1997] studied how to estimate the original detail data from the
stored summary. This task has been formulated as an inverse problem of
summary data computation, and a well-defined cost function to be optimized
under constraints has been specified. The rationale of this study is that the data
are summarized over discrete ranges to create a database of manageable size
for storage, manipulation, and display. Often, there is a need to respond to
queries that can be answered accurately only from the base data, but that must
be answered quickly from the summarized data. The task is then to reconstruct
as good an estimate of the original base data as possible. The idea of an
application in data warehousing is that the central site will have meta-data and
condensed information (e.g., summary data) from each participating site
which has detailed information. Accessing the remote site might be slow
and/or expensive; therefore, a cheap, accurate estimate of the missing
information is thus very attractive.

14.3.2.8 Storage versus recomputation
In many cases, the resources (such as time or memory storage) available to

the problem solving process may present a significant factor of restriction. By
emphasizing different restrictions, a problem may be solved in very different
fashions. Unlike many other heuristics discussed so far, these restrictions do
not serve as part of the solutions. Nevertheless, they are an indispensable part
of the problem solving process. In the following we examine several
examples.
• Iterative deepening DFS versus dynamic programming: In Chapter 2 we

examined depth first search (DFS). Although DFS has some merits of
space efficiency, it suffers from problems such as failing to find an
optimal solution. Iterative deepening DFS (IDDFS) combines the space
efficiency of DFS with the optimality of breadth-first search. The idea is
to recompute the elements of the visited nodes rather than storing them.
Each recomputation is conducted in DFS, thus saving space. IDDFS can
be compared with dynamic programming, another improvement of DFS,
in their different ways of dealing with the two different resources (time

and storage). One intuition behind dynamic programming is to construct
the "perfect" heuristic function so that heuristic depth-first search is
guaranteed to find a solution without ever backtracking. The heuristic
function constructed represents the exact costs of a minimal cost path
from each node to the goal [Poole, Mackworth and Goebel 1998]. This is
achieved by storing intermediate result calculated from a recursion into a
table.

• Eager learning versus lazy learning: Another interesting area
demonstrating the tradeoff between time and space is concerned with
different strategies of machine learning. In Chapter 10 we have already
discussed several different learning algorithms. Recent progress on lazy
learning (and its comparison with eager learning) illustrates another
dimension of categorization of machine learning algorithms. Eager
learning algorithms greedily compile their inputs into an intensional
concept description (such as a rule set, a decision tree, a neural network,
etc.), and in this process discard the inputs. They reply to information
requests using this a priori induced description, and retain it for future
requests. In contrast, lazy learning algorithms simply store their inputs for
future use, thus defer processing of their inputs until they receive
requests for information. Lazy learning algorithms reply to information
requests by combining their stored data (such as data used for training).
These algorithms also discard the constructed answer and any
intermediate results. This eager/lazy distinction exhibits many interesting
tradoffs. For example, lazy algorithms typically have greater storage
requirments and often have higher computational costs when answering
requests, but what have gained are the lower computational costs than
eager algorithms during training [Aha 1997].

• Materialized views versus conventional (namely, virtual) views: The
comparison between them has been discussed in Chapter 11, and will not
be repeated at here.

14.3.2.9 Step-wise refinement and manipulation of changes
In addition to what described above, more conventional problem solving

wisdom also plays important roles in integrated decision making, even they
are less dramatical or exciting than heuristics studied above. For example,
step-wise refinement helps solving problem in a step-by-step manner.
Another example is solving problem by manipulating changes: For the same
problem to be solved, if some parameters or variables have changed their
values, instead of recomputing a new solution, we revise the old solution by
reflecting the effect of these changes. The problem can thus be solved in a
more efficient manner. For example, RETE algorithm developed in production
systems model reflects this philosophy (Chapter 5). Another example is the
semi-naïve method in deductive query evaluation (Chapter 4). Yet another
example is incremental view maintenance (Chapter 4 and Chapter 11), which
has made materialized views more manageable. However, we should note that
the power of problem solving by manipulating changes may be somewhat

limited, as shown in the case of semi-naïve method of deductive query
evaluation, and that is why a more radical approach using magic sets was
proposed (Chapter 4).

14.3.3 SUMMARY OF HEURISTICS

In summary, heuristics presented in this section suggest to find common
features behind various problem solving methods, thus resembling
considerations of science of science [Price 1963; Chen, 1970, 1993a], or Meta
science. In the next section, we will take a more systematic look on some
important meta issues.

14.4 META-ISSUES FOR DECISION MAKING

 In this section we examine several issues associated with the prefix "meta,"
including the use of meta-data and meta-knowledge for meta-reasoning. In
general, this examination allows us a deeper understanding of subject
materials, because although the exact meaning of "meta" varies, the discussed
issues are all concerned with better control by taking advantage of broader
knowledge.

14.4.1 META-ISSUES IN DATABASES AND DATA WAREHOUSES

14.4.1.1 Meta-data
We start our discussion of meta-issues in logical data modeling. In a

database management system, the result of the compilation of the Data
Definition Language (DDL) is a set of tables stored in special files
collectively called the system catalog (Also called data dictionary, although
the latter term usually refers to a more general software system). An important
feature of the system catalog is that it integrates the meta-data, which are data
about data, or the data describing objects in the database, and facilitating
database access and manipulation. Meta data play an important role in data
warehouse integration. The major purpose of meta-data in a data warehouse
(usually by employing a repository) is to show the pathway back to where the
data began, so that the warehouse administrators know the history of any item
in the warehouse. Meta data have several functions with the data warehouse
that relate to the processes associated with data transformation and loading,
date warehouse management and query generation [Connolly, Begg and
Strachan, 1998].

14.4.1.2 Meta-databases
Note that meta-data as discussed above are used for guiding the access and

manipulation of the database which usually stores the original (namely, non-
meta) data. From meta-data we can further discuss meta databases, whose
contents themselves are meta-data. Multilevel databases are a good example
of meta-databases. At the higher level(s) meta data or generalizations are

extracted from lower levels and organized in structured collections such as
relational or object-oriented databases. For example, [Zaiane and Han 1995]
uses a multi-layered database where each layer is obtained via generalization
and transformation operations performed on the lower layers. [Khosla Kuhn
and Soparkar 1996] proposes the creation and maintenance of meta-databases
at each information providing domain and the use of a global schema for the
meta-database. [King and Novak 1996] proposes the incremental integration
of a portion of the schema from each information source, rather than relying
on a global heterogeneous database schema.

14.4.1.3 Meta-searching in the Internet
Another aspect which shows the power of using meta-knowledge is meta-

search on the Internet. We described the basic search architecture in Chapter
5. The complexity of Web search demands more effective Web search
methods, and several approaches have been developed. In particular, [Gravano
and Papakonstantinou 1998] compared meta-searching versus mediating on
the Internet. Internet users can benefit from mediators and meta-searchers
which provide users with a virtual integrated view of heterogeneous sources.
They have shared goals and architecture. In both cases, wrappers export a
common data model view of each source's data. Wrappers also provide a
common query interface. After receiving a query, a wrapper translates it into a
source-specific query or command, hence giving interface transparency to the
user. The wrapper then translates the query results from the underlying source
into the common data model or format. To evaluate a user query over multiple
heterogeneous databases, both mediators and meta-searchers will typically
perform three main tasks:
• Database selection: Choose the databases that have data relevant to the

user query.
• Query translation: Find the query fragment to be evaluated at each of the

databases chosen in the previous step, translate these fragments so that
they can be executed at their corresponding databases, and retrieve the
query results from the databases.

• Result merging: Combine the query results from the above databases into
the final query answer.

Nevertheless, the focus of the research on meta-searchers has been quite
different from that of the research on mediators. The following two key issues
illustrate this difference, and indicate the strength of the meta-approach.
• View complexity: Mediators usually integrate multiple relations or objects

with complementary information. Therefore, fusion of objects from
several databases is not uncommon when defining mediator views. The
higher complexity the mediator views requires, the more powerful view
definition languages is needed, along with more powerful languages to
query the integrated view. In contrast, meta-searchers typically operate on
the top of document databases, and the view that meta-searchers export to
users is generally some kind of union of the underlying databases.

• Query matches and result completeness: The interaction of a user with a
mediator is very similar to the interaction of a user with a relational
database system. In this process, the user sends a query and the mediator
typically returns the complete answer to the query. In effect, mediators
generally operate over databases where query results are well-defined sets
of objects, as in the relational model discussed in Chapter 4. In contrast,
meta-searchers usually deal with collections of unstructured text
documents that return document ranks as the answer to a query, where the
ranks are computed using undisclosed algorithms. Inexact matches are
used between queries and documents, as in the vector-space model of
information retrieval (IR) described in Chapter 5. Furthermore, these
sources might return only the best matches for the query. Hence, meta-
searchers have to handle query results that have been computed using
unknown matching algorithms. Meta-searchers also are aware that partial
answers to queries are usually acceptable on the Internet, thus abandoning
the goal of producing complete answers. Therefore, meta-searchers are a
natural blend of traditional database search and IR search engines.

Meta-search engines reduce the user burden by dispatching queries to
multiple search engines in parallel and introduced a kind of adaptability into
the search mechanism. As a concrete example of metasearch research, we can
mention the SavvySearch meta-search engine [Howe and Dreilinger 1998],
which is designed to efficiently query other search engines by carefully
selecting those search engines likely to return useful results and responding to
fluctuating load demands on the web. SavvySearch learns to identify which
search engines are most appropriate for particular queries, reasons about
resource demands, and represents and iterative parallel search strategy as a
simple plan.

14.4.2 META-KNOWLEDGE AND META-REASONING

14.4.2.1 General remarks
In Chapter 3 we discussed logical properties of knowledge and belief. In

fact, the process of inference can be formalized. This is an example of
reasoning about reasoning, or meta-reasoning, and is discussed in the context
of modal logic [Genesereth and Nilsson 1986]. At a more practical side,
various aspects related to meta-knowledge (namely, knowledge about
knowledge) in computational intelligence is discussed in [Chen 1993]. A
particular form of meta-knowledge is a meta-rule, which provides some guide
in using domain-specific rules. An example of constructing meta-rules is
fuzzy meta rules in genetic computing [Pedrycz 1996], which combines fuzzy
set theory, genetic algorithms, and abstraction. The reason is that there is a
need for some additional adjustment and tuning of parameters to perform
genetic efficiently in a given environment. In order to determine parameters
such as mutation rate or crossover rate, simply relying on experiments is not

sufficient. Rule bases have been developed to contain rules describing the
selection of suitable crossover and mutation rates.

In the following we take a look at two specific issues related to meta-
reasoning in knowledge-based systems: meta-level reasoning for flexible
inference control using fuzzy logic and combining creativity and expertise
using a meta-level interpreter.

14.4.2.2 Meta-level reasoning for flexible inference control using fuzzy
logic

In Chapter 6 we discussed the issue of flexible inference control in
knowledge-based systems. In this chapter we take a closer look at a specific
issue of flexible inference control, namely, inference control using meta-level
reasoning. The history of using meta-knowledge for flexible inference control
can be traced back to early expert systems such as Meta-DENDRAL and
TEIRESIAS. Strategies were viewed as a means of controlling invocation in
situations where traditional selection mechanisms become ineffective.

In order to understand the role of meta knowledge in flexible inference
control, we note that the terms "domain knowledge" and "control knowledge"
are often used to distinguish what a system knows from how the system uses
what it knows. One problem with this terminology is that it suggests that
control knowledge is domain independent. However, in real-world
applications, control knowledge can be either domain dependent or domain
independent, depending on whether it refers to the contents of particular
elements of domain knowledge. For example, the meta-knowledge "use rules
that mention cheap blood tests before rules that mention expensive blood
tests" is domain-dependent, while the meta-knowledge "use cheap rules before
expensive rules" is not, because it only refers to the general form of the
domain knowledge, without referring to its domain-specific contents.

In Chapter 5 we discussed the architecture of expert systems and in Chapter
12 we discussed fuzzy expert systems, with fuzzy controllers as an example.
Note that a fuzzy controller uses fuzzy rules to control behavior, but the
inference engine itself is not fuzzified. Bellow we describe an extended expert
system architecture which incorporates a flexible fuzzy inference controller
where the inference engine can demonstrate flexible behavior. Fuzzy
inference control is achieved using meta-rules.

The discussion on the need for flexible inference control and the
employment of meta-level reasoning to realizing flexible inference control can
be traced back to early expert systems such as Meta-DENDRAL and
TEIRESIAS (the preprocessor of MYCIN). Strategies were viewed as a means
of controlling invocation in situations where traditional selection mechanisms
become ineffective. Several ways of effecting such control were discussed; in
particular, meta-rules were used as a means of specifying strategies which
offer a number of advantages.

It is important to note that terms “domain knowledge” and “control
knowledge” are often used to distinguish what a system knows from how the
system uses what it knows. One problem with this terminology is that it

suggests that control knowledge is domain independent. However, control
knowledge can be either domain dependent or domain independent, depending
on whether it refers to the contents of particular elements of domain
knowledge, as in “use rules that mention cheap blood-tests before rules that
mention expensive blood-test,” or whether it only refers to the general form
of the domain knowledge, without referring to its domain-specific contents, as
in “use cheap rules before expensive rules”.

Meta-level reasoning thus plays an important role between the domain
knowledge in the knowledge base and the control knowledge used by the
inference engine. If reasoning is fuzzy in nature, then the inference procedure
itself should be fuzzified. The fuziness of inference can be achieved by using
meta-level reasoning in an extended expert system model as depicted in
Figure 14.2.

Meta rules can be used in the following ways.
(1) Instead of attaching a single number to indicate the priority of a rule, each

rule in the domain knowledge base is associated with a fuzzy priority
vector with k factors (namely, a k-dimensional vector) to indicate k
different ways of firing rules (so that flexible inference control can be
realized).

(2) Meta reasoning is achieved through meta-rules fired by the inference
engine. Meta-rules are stored in the flexible inference controller; they
provide instructions on how to activate the rules stored in the domain
knowledge base. Each meta-rule takes the following format:

 if condition
 then fire rules in knowledge domain with certain
features.

 User

Figure 14.2 Extended expert system model with fuzzy inference control

Knowledge Base

Fuzzy
Inference
Controller

Inference Engine
Working
Memory

User
Interface

Explanation
Unit

Fuzzy inference controller stores various meta-rules which indicate how to
employ fuzzy operators. Various fuzzy operators exist; for example, the
concentration operator (CON) as described in Chapter 12. When the fuzzy
priority vectors are used, a meta-rule can take a more concrete form such as

 if the ith factor is involved in current request
 then form a meta-level vector whose ith dimension is CON
 and all the other dimensions take the value of 0.

For instance, meta-rules may use concentration CON(A), where λCON(A)(x) =
(λA(x))2. Note that the use of concentration operator will not change the
relative relationship (namely, relative priority), but will increase the difference
between priorities. If cutoff threshold remains unchanged, the number of rules
in the conflict set will be reduced. For instance, suppose we use α-cut = 0.5,
and the original conflict set consists of three rules with fuzzy priority numbers
0.5, 0.6, and 0.8, respectively. After the concentration operator is applied, the
fuzzy priority numbers associated with these three rules become 0.25, 0.36,
and 0.64, respectively; if α-cut remains unchanged, then only the last rule
(with fuzzy priority number 0.64) will remain in the conflict set.

Another useful operator is intensification INT(A). The INT operation is like
contrast intensification of a picture: it raise the membership grade of those
elements within the crossover points and reduces the membership grade of
those outside the crossover points, thus increasing the contrast grade between
two kinds of elements. In our case, since each element represents a priority,
the INT operation as specified in the meta-rules will increase the differences
between the priority values associated with different rules, thus reducing the
number of rules in the conflict rule set.

A top-level algorithm for fuzzy flexible inference control is shown below.
This algorithm uses meta-rules to deal with conflict resolution by
incorporating user environments or stereotypes.

While request from user do

1. categorize the user environment or stereotype;
2. fire a meta-rule;
3. perform fuzzy operations indicated by the meta-inference rule on

domain rules;
4. perform backward chaining using activated domain rules;
5. display results to the user;

In the above algorithm, step 1 takes place in the user interface component
U, step 2 takes place in the inference engine I and fuzzy inference controller
C, step 3 takes place in fuzzy inference controller C and knowledge base K,
step 4 takes place in inference engine I, knowledge base K and working
memory W , and finally, step 5 again takes place in the user interface
component U.

We use a fuzzy inference controller to reduce the size of the conflict set.
The form of the meta-rules provided by the fuzzy inference controller follow
what was described in the previous section; the following is an example:

if user belongs to ith type,
 then form a meta-level reasoning vector
 (0, 0, …, CON, …, 0).

(namely, a vector with ith dimension set to fuzzy concentration
operator, while all the other dimensions set to 0).

The vector as specified by the meta-level rule operates on rules (denoted as
rKB’s) in the knowledge base. This can be denoted as

max (rmeta(rKbi))
(here we use bold face to emphasize that meta-rule rmeta is an operator). The
specified operator is then further carried out through vector multiplication:

max (Vmeta ∗ V’KBi),
where Vmeta andVKBi are two fuzzy priority vectors associated with the meta-
rule and a rule in domain knowledge base, respectively; and a symbol ‘ is used
to denote vector transposition.

T o i l l u s tr a t e th e i d ea o f th i s a p p r o a c h , w e u s e t h e f o l l o w i n g s i m p l e
example. Consider an expert system which mimics a travel agency which
selects appropriate trip packages for the users. Different users types have been
defined. A sample rule defined in the knowledge base would be "If destination
= Orlando and cost = Luxury then package = 1 with fuzzy priority vector (0.8,
0.8, 0.4)." To see how the fuzzy inference controller is used, consider a user of
type family vacationer. A meta-rule stored in the fuzzy inference controller
will be fired, which forms a fuzzy priority vector Vmeta = (0, 0, CON),
because family vacationer is the third dimension in the vector. The result of
vector mulitplication gives

max(0 0 1)(0.8 0.8 0.4)' = 0.4.
For more detail, see [Chen 1996a].

Flexible inference control is not necessarily be carried out in the context of
fuzzy logic. A discussion (without specific concern over fuzzy logic) on user
modeling for flexible inference control and its relevance to decision making in
economics and management is provided in [Chen 1992b]. A more general
discussion can be found in [Chen, 1996b], where we discuss the issue of
applying inductive reasoning on the different types of user so that the system
behavior can be adapted to various situations.

14.4.2.3 Combining creativity and expertise using a meta-level
interpreter

In Chapter 5 we discussed the basic architecture of rule-based expert
systems, and in Chapter 6 we discussed the issue of knowledge modeling. In
addition, in Chapter 8 we further discussed the need for combining creativity
with expertise. How can we put all these things together? With the hope that
creative knowledge can be used to enhance the reasoning ability of
knowledge-based systems, in the following we sketch an extended expert
system model where creative knowledge could be incorporated into

knowledge-based systems and its impact on the architecture of these systems.
We follow the discussion from [van Harmelen 1991] who distinguished three
types of knowledge-based systems which are mixed up with object-level
inference and meta-level inference:
• Reflect-and-act systems: the meta-level interpreter is called very

frequently, before or after every object-level step.
• Crisis-management systems: the meta-level is called only if a crisis or an

impasse occurs in the object level computation, for example when too
many or not enough steps are possible at the object-level.

• Subtask-management systems: the meta-level knowledge is used to
partition the object-level task into a number of subtasks.

Creative knowledge can be handled in a way similar to crisis-management
systems, and an extended expert system architecture is depicted in Figure
14.2. In this extended model, the creative knowledge is consulted only if there
is a need to do so. By this way, expertise and creativity thoughts can be used
in a combined manner. For more detail of this approach, see [Chen 1997].

 F

Figure 14.3 Extended expert system model

14.4.3 META-KNOWLEDGE AND META-PATTERNS IN DATA
MINING

14.4.3.1 Meta-queries and meta rules
We now revisit the issue of data mining with emphasis on the role of meta

knowledge. The discussion will mainly follow [Shen, Ong, Mitbander and
Zaniolo, 1996]. Meta-queries have been used to integrate inductive learning
methods with deductive database technologies in the context of knowledge
discovery from databases. Meta-queries are second-order predicates or
templates. For example, let P, Q, and R be variables for predicates, then the
following expression

P(X,Y) ∧ Q(Y,Z) ⇒ R(X, Z)

is an example of meta-query, which specifies that the patterns to be discovered
are transitivity relations p(X,Y) ∧ q(Y,Z) ⇒ r(X, Z), where p, q, and r are
specific predicates. One possible result of this meta-query is the pattern

sales (X,Y) ∧ profitable (Y,Z) ⇒ making-money (X, Z)

 Consult

Knowledge
base

Inference engine
(control

knowledge)

Object-level
interpreter

Strategic
knowledge
interpreter

with a probability (0.7)
where sales, profitable and making-money are relations that bind to P, Q, and
R, respectively, in the current database.

Meta-queries are used for guiding deductive data collection, focusing
attention for inductive learning, and assisting human analysts in the discovery
loop. A system based on a framework has been developed which utilizes this
idea to unify a Bayesian Data Cluster with the Logical Data Language
(LDL++). According to this framework, meta-queries serve as the link
between the inductive and deductive aspects of knowledge discovery, thus
facilitating a deductive-inductive-human discovery loop. Meta-queries outline
the data collecting strategy for the deductive part of the loop; they serve as the
basis for the generation of specific queries, which are obtained by instantiating
the variables in the meta-queries with values representing relations and
attributes in the relational database of interest. These instantiated queries are
then run against the database to collect relevant data. Users can either type
their meta-queries directly, or have the system generate some initial meta-
queries automatically. Furthermore, meta-queries also serve as a generic
description of the class of patterns to be discovered and help guide the process
of data analysis and pattern generation in the inductive part of the loop. The
patterns discovered from the database adhere to the format of the current
meta-query. Patterns discovered using meta-queries can link information from
many relations in databases; besides, these patterns are relational (rather than
propositional).

Closely related to meta-patterns are meta-rules. In the context of data
mining, a meta-rule is a rule template in which some of the predicates (and/or
their variables) in the antecedent and/or consequent of the meta-rule could be
instantiated. Meta rules are patterns discovered using meta-queries with
degree of certainty (for example, using a counter, probabilities, percentage, or
something else). These rules can link information from many tables in
databases, and they can be stored persistently for multiple purposes, including
error detection, integrity constraints, or generation of more complex meta-
queries.

According to [Shen, Ong, Mitbander and Zaniolo, 1996], meta-queries can
be specified by human experts or can be autoamtically generated from the
database schema. They serve as an important interface between human
discoverers and the discovery system. Using meta-queries, human experts can
focus the discovery process onto more profitable areas of the database and the
system generated meta-queries may provide valuable clues to the human
experts.

14.3.3.2 Template design for mining association rules
Motivated from utilizing meta-knowledge for data mining, templates have

been used more and more. For example, [Fu and Han 1995] employs a rule
template to describe what forms of rules are expected to be found from the
database, and such a rule template is used as a guidance or constraint in the
data mining process. A classification of association rule types has been

proposed in [Baralis and Psaila 1997], which provides a general framework
for the design of association rule mining applications. Dimensions of rule
types include mining condition, clustering condition, and filtering condition.
Based on the identified association rule types, predefined templates can be
introduced as a means to capture the user specification of mining applications.
A general language to design templates has also been proposed for the
extraction fo arbitrary association rule types.

14.4.4 META-LEARNING

As already discussed in Chapter 10, closely related to data mining is the
concept of machine learning, but these two have quite different focuses.
Machine learning is more concerned with inference mechanisms involved in
the overall process. For this purpose, it would be beneficial to examine the
learning process itself, and meta-learning makes big sense. The following is a
definition of learning to learn.

Given (a) a family of tasks, (b) training experience for each of these
tasks, and (c) a family of performance measure (e.g., one for each
task), an algorithm is capable of learning to learn if its performance
at each task improves with experience and with a number of tasks.

In other words, a learning algorithm whose performance does not depend
on the number of learning tasks, which hence would not benefit from the
presence of other learning tasks, is not considered to fall in the category of
learning to learn. For an algorithm to fit this definition, some kind of cognitive
transfer must occur between multiple tasks that must have a positive impact
on expected task performance.

As with traditional inductive machine learning methods, algorithms that
learn to learn induce general functions from examples. However, learning to
learn methods include an additional feature, which is that their learning bias is
chosen based on learning experience in other tasks. Humans often generalize
correctly after a small number of training examples by transferring knowledge
acquired in other tasks; systems that learn to learn mimic this ability.
Algorithms that learn to learn often outperform other learning algorithms
[Thrun and Pratt 1998].

Other aspects of meta-learning also exist. For example, a discussion on
meta learning and fuzzy sets can be found in [Pedrycz 1998].

14.4.5 SUMMARY AND REMARK ON META-ISSUES

In this section we examined several aspects of meta-issues. In general,
when we talk about a meta-issue, there are always two levels involved: one is
at the object level ("X"), the other is the second order ("X about X").
Examining different aspects of meta-issues in different contexts gives us a
better understanding on how computational intelligence techniques can be
used for decision making. There are many other meta issues not discussed
here, and sometimes the prefix "meta" may have a meaning different from
what we have seen so far. For example, we may take a brief look at meta-talk,

which refers to meanings behind human beings' ordinary talk [Nierenberg and
Calero 1974]. Talk exists on at least three levels of meaning:

(i) What the speaker is saying;
(ii) What the speaker thinks he is saying;
(iii) What the listener thinks the speaker is saying.

The second and third levels require much more consideration than the first.
Meta-talk is aimed to find hidden meanings in conversations.

Note that here meta-talk does not refer to "talk about talk;" rather, it refers
to an analysis of talk. In this sense, meta-talk is related to modal logic and thus
has some different concerns than those discussed in this section. Nevertheless,
by analyzing the intention of the speaker, meta-talk may play an interesting
role in decision support when conversations are an important part of a
decision making process.

SUMMARY

In the last chapter, we have reviewed some important materials presented
earlier in this book. The need for integrated heuristic decision making is
discussed. We examined some important problem solving heuristics, which
play the role of "invariant" for integrated decision making. Several meta-
issues have been discussed, which illustrate the importance of control
knowledge in problem solving. Various techniques summarized in this chapter
are all important to creating intelligent agents for decision making. An
important issue related to building intelligent agents is the development of
self-adaptive software [Laddaga 1999].

To wrap up the whole book, we give the following final remarks.
Technology keeps on changing, and it is essential to understand the important
aspects underneath the surface. Studying high level heuristics or invariant
behind these methods will help us to establish an integrated perspective of
these techniques. It is important to keep in mind that learning existing
techniques is an important aspect for intelligent decision making, but far from
enough. More importantly, we should equip ourselves to deal with future
challenges. This means that instead of having a piece of bread, we need the
hunting gun. An intelligent agent is able to use a hunting gun that is powerful
and flexible enough to get whatever he or she wants.

SELF-EXAMINATION QUESTIONS
1. In this chapter we discussed several high-level heuristics for integrated

decision making. However, this discussion is far from complete; for
example, other heuristics also exist. Try to identify at least one of them.
(Hint: If you cannot think about anything els e, con sider the relation ship
between part and whole.)

2 . Heuristics are rule of thumb; they are fallible. Give an example to
illustrate how high-level heuristics may not work in some circumstances.

REFERENCES

Aha, D. W., Lazy Learning, Kluwer, Dordrecht, 1997.
Baralis, E. and Psaila, G., Design templates for mining association rules, J.
Intelligent Inf. Systems, 9, 7-32, 1997.
Bienkowski, M.A., A reader's guide to agent literacy, SIGART Bulletin, 23-
28, Fall 1998.
Chen, Z., Comedy of Life (in Chinese), unpublished manuscript, 1970.
Chen, Z., A conceptual framework for expert system description, Computers
and Education, 18(4), 259-266, 1992a.
Chen, Z., User modeling for flexible inference control and its relevance to
decision making in economics and management, Computational Economics,
6, 163-175, 1992b.
Chen, Z., Intelligence and discovery in an information society: An essay in
memory of Derek de Solla Price, The Information Society, 9, 277-280, 1993a.
Chen, Z., On continuous AI and meta-knowledge, Kybernetes, 22(4), 78-84,
1993b.
Chen., Z., Using meta-rules for fuzzy inference control, Fuzzy Sets and
Systems, 79(2), 163-173, 1996a.
Chen, Z., Users and system adaptivity: A GSPS perspective, Int. J. General
Systems, 24 (1-2), 33-42, 1996b.
Chen, Z., Cybernetics and creativity: the metaphor of Brownian motions,
Kybernetes, 25(5), 60-62, 1996c.
Chen, Z., Acquiring creative knowledge for knowledge-based systems,
Journal of Intelligent Systems, 6(3/4), 179-198, 1997.
Connolly, T., Begg, C. and Strachan, A., Database Systems: A practical
Approach to Design, Implementation, and Management (2nd ed.), Addison-
Wesley, Harlow, England, 1998.
Cui, Y., Widom, J. and Wiener, J. L., Tracing the lineage of view data in a
warehousing environment, Technical Note, Stanford University, 1997.
Faloutsos, C., Jagadish, H. V. and Sidiropoulos, N. D., Recovering
information from summary data, Proceedings of 23rd Conference of Very
Large Data Bases (VLDB 97), pp. 36-45, 1997.
Fu, Y. and Han, J., Meta-rule-guided mining of association rules in relational
databases, Proceedings of International Workshop. on Knowledge Discovery
and Deductive and Object-Oriented Databases (KDOOD'95), 1995.
Genesereth, M. R. and Nilsson, N. J., Logical Foundations of Artificial
Intelligence, Morgan Kaufmann, Los Altos, CA, 1986.
Gravano, L. and Papakonstantinou, Y., Mediating and metasearching on
the Internet, Data Engineering Bulletin, pp. 28-36, 21(2), 1998.

Howe, A. E. and Dreilinger, D., SavvySearch: A metasearch engine that
learns which search engines to query, Data Engineering Bulletin, 21(2), 1998.
Kass, R. and Finin, T., The role of user models in cooperative interactive
systems, Internatioanl Journal of Intelligent Systems, 4, 81-112, 1989.
Khosla, I., Kuhn, B. and Soparkar, N., Database search using information
mining, Proceedings of 1996 ACM-SIGMOD International Conference on
Management of Data, 1996.
King, R. and Novak, M., Supporting information infrastructure for
distributed, heterogeneous knowledge discovery, Proceedings of SIGMOD
1996 Workshop on Research Issues on Data Mining and Knowledge
Discovery, Montreal, Canada, 1996.
Kuok, C. M., Fu, A. and Wong, M. H., Mining fuzzy association rules in
databases, SIGMOD Record, 27(1), 41-46, 1998.
Laddaga, R. (guest ed.), Special issue: Creating robust software through self-
adaptation, IEEE Intelligent Systems & Their Applications, 14(3), 26-62,
1999.
Nierenberg, G. I. and Calero, H. H., Meta-talk: Guide to hidden meanings
in conversations, Trident Press, New York, 1974.
Pedrycz, W., Computational Intelligence: An Introduction, CRC Press, Boca
Raton, FL, 1996.
Polya, G., How to Solve it, Princeton University Press, Princeton, NJ, 1957.
Poole, D., Mackworth, A. and Goebel, R., Computational Intelligence: A
Logical Approach, Oxford University Press, New York, 1998.
Price, D., de S., Little Science, Big Science, Columbia University Press, New
York, 1963.
Raeth, P., Fuzzy Engineering by Bart Kosko (book review), SIGART Bulletin,
39-41, Summer 1998.
Shen, W. M., Ong, K., Mitbander, B. and Zaniolo, C., Metaqueries for data
mining, Advances in Knowledge Discovery and Data Mining, Chap. 15, 375-
421, 1996.
Thrun, S. and Pratt, L. (eds.), Learning to Learn, Kluwer, Boston, 1998.
van Harmelen, F., Meta-Level Inference Systems, Morgan Kaufmann, San
Mateo, CA, 1991.
Weiss, M. A., Data Structures and Algorithm Analysis in C++ (2nd ed.),
Benjamin/Cummings, Redwood City, CA, 1998.
Zaiane, O. R. and Han, J., Resource and knowledge discovery in global
information systems: A preliminary design and experiment, Proceedings of
the First International Conference on Knowledge Discovery and Data Mining,
pp. 331--336, Montreal, Quebec, 1995.

	1799_PDF_TOC.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Preface
	WHY THIS BOOK IS NEEDED
	WHAT READERS CAN EXPECT FROM THIS BOOK
	HOW THIS BOOK IS ORGANIZED
	HOW TO USE THIS BOOK:INSTRUCTORS,STUDENTS, SCIENTISTS,LEISURE READERS
	For instructors:
	For students:
	For scientists and leisure readers:

	1799_PDF_C01.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	DECISION SUPPORT AND COMPUTATIONAL INTELLIGENCE
	1.1 OVERVIEW
	1.2 THE NEED FOR DECISION SUPPORT AGENTS
	1.3 COMPUTERIZED DECISION SUPPORT MECHANISMS
	1.4 COMPUTATIONAL INTELLIGENCE FOR DECISION SUPPORT
	1.5 A REMARK ON TERMINOLOGY
	1.6 DATA,INFORMATION AND KNOWLEDGE
	1.7 ISSUES TO BE DISCUSSED IN THIS BOOK
	SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Part II
	Chapter 7
	Chapter 8
	Chapter 9

	Part III
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Part IV
	Chapter 14

	1799_PDF_C02.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	Chapter 2
	SEARCH AND REPRESENTATION
	2.1 OVERVIEW
	2.2 SAMPLE PROBLEMS AND APPLICATIONS OF COMPUTATIONAL INTELLIGENCE
	2.2.1 SOME SIMPLE EXAMPLES
	2.2.2 APPLICATIONS

	2.3 DEFINITION OF COMPUTATIONAL INTELLIGENCE
	2.3.1 HISTORICAL DEVELOPMENT OF COMPUTATIONAL INTELLIGENCE
	2.3.2 COMPUTATIONAL INTELLIGENCE AS AGENT-BASED PROBLEM SOVLING
	2.3.3 MEASURING THE INTELLIGENCE:TURING TEST

	2.4 BASIC ASSUMPTIONS OF COMPUTATIONAL INTELLIGENCE
	2.4.1 SYMBOLISM
	2.4.1.1 Physical symbolism and representation
	2.4.1.2 Physically grounded
	2.4.1.3 Subsymbolism
	2.4.1.4 Other approaches

	2.4.2 SEQUENTIAL OR PARALLEL
	2.4.3 LOGIC-BASED APPROACH
	2.4.4 HUMAN INTELLIGENCE AS METAPHOR
	2.4.5 SUMMARY

	2.5 BASIC STORAGE AND SEARCH STRUCTURES
	2.5.1 ABSTRACT DATA TYPES AND DATA STRUCTURES
	2.5.2 LINEAR STRUCTURES:LISTS,STACKS,QUEUES AND PRIORITY QUEUES
	2.5.3 TREES
	2.5.4 INDEX STRUCTURES FOR DATA ACCESS
	2.5.5 DISCRIMINATION TREES FOR INFORMATION RETRIEVAL
	2.5.6 GRAPHS
	2.5.7 REMARKS ON SEARCH OPERATION

	2.6 PROBLEM SOLVING USING SEARCH
	2.6.1 MEANINGS OF SEARCH
	2.6.2 STATE SPACE SEARCH
	2.6.3 REMARKS ON SCALING UP

	2.7 REPRESENTING KNOWLEDGE FOR SEARCH
	2.7.1 LEVELS OF ABSTRACTION IN COMPUTATIONAL INTELLIGENCE PROBLEM SOLVING
	2.7.2 USING ABSTRACT LEVELS
	2.7.3 PROGRAMMING LANGUAGES FOR COMPUTATIONAL INTELLIGENCE
	2.7.3.1 Desirable features of programming languages for symbolic reasoning
	2.7.3.2 Remarks on LISP,and Prolog and C++

	2.8 STATE SPACE SEARCH
	2.8.1 UNINFORMED SEARCH (BLIND SEARCH)
	2.8.1.1 Depth-first search
	2.8.1.2 Breadth-first search
	2.8.1.3 Iterative deepening search
	2.8.1.4 Comparison of uninformed search algorithms

	2.8.2 HEURISTIC SEARCH
	2.8.2.1 Heuristics
	2.8.2.2 Best first search

	2.9 REMARK ON CONSTRAINT-BASED SEARCH
	2.10 PLANNING AND MACHINE LEARNING AS SEARCH
	2.10.1 PLANNING AS SEARCH
	2.10.2 SYMBOL-BASED MACHINE LEARNING AS SEARCH

	SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Part II
	Chapter 7
	Chapter 8
	Chapter 9

	Part III
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Part IV
	Chapter 14

	1799_PDF_C03.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	Chapter 2
	Chapter 3
	PREDICATE LOGIC
	3.1 OVERVIEW
	3.2 FIRST ORDER PREDICATE LOGIC
	3.2.1 BASICS
	3.2.2 PROPOSITIONAL CALCULUS
	3.2.3 PREDICATES
	3.2.4 QUANTIFIERS
	3.2.5 KNOWLEDGE BASE
	3.2.6 INFERENCE RULES
	3.2.7 SUBSTITUTION,UNIFICATION,MOST GENERAL UNIFIER
	3.2.8 RESOLUTION --THE BASIC IDEA

	3.3 PROLOG FOR COMPUTATIONAL INTELLIGENCE
	3.3.1 BASICS OF PROLOG
	3.3.1.1 A sample Prolog program
	3.3.1.2 Structure of a Prolog statement
	3.3.1.3 Remarks on structure of a Prolog program
	3.3.1.4 Two kinds of queries (retrieval and confirmation)
	3.3.1.5 Closed world assumption
	3.3.1.6 Answering query through depth first search
	3.3.1.7 Relationship with resolution proof
	3.3.1.8 Unification through recursion
	3.3.1.9 More remarks on unification
	3.3.1.10 Using built-in predicates

	3.3.2 SAMPLE PROLOG PROGRAMS
	3.3.2.1 "I am my own grandfather"puzzle
	3.3.2.2 Farmer,wolf,goat and cabbage puzzle revisited

	3.3.3 SUMMARY OF IMPORTANT THINGS ABOUT PROLOG

	3.4 ABDUCTION AND INDUCTION
	3.4.1 OTHER FORMS OF REASONING
	3.4.2 INDUCTION
	3.4.3 ABDUCTION

	3.5 NONMONOTONIC REASONING
	3.5.1 MEANING OF NONMONOTONIC REASONING
	3.5.2 COMMONSENSE REASONING
	3.5.3 CIRCUMSCRIPTION
	3.5.4 SUMMARY OF NONMONOTONIC REASONING

	SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	Chapter 4
	Chapter 5
	Chapter 6

	Part II
	Chapter 7
	Chapter 8
	Chapter 9

	Part III
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Part IV
	Chapter 14

	1799_PDF_C04.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	RELATIONS AS PREDICATES
	4.1 OVERVIEW
	4.2 THE CONCEPT OF RELATION
	4.3 OVERVIEW OF RELATIONAL DATA MODEL
	4.3.1 SCHEMA AND INSTANCE
	4.3.2 DECLARATIVE AND PROCEDURAL LANGUAGES

	4.4 RELATIONAL ALGEBRA
	4.4.1 PREVIEW OF RELATIONAL ALGEBRA
	4.4.2 HOW TO FORM A RELATIONAL ALGEBRA QUERY FROM A GIVEN ENGLISH QUERY
	4.4.3 RELATIONAL ALGEBRA:FUNDAMENTAL OPERATORS
	4.4.3.1 Unary operators (Within same relation)
	4.4.3.2 Binary operators

	4.4.4 RELATIONAL ALGEBRA:ADDITIONAL OPERATORS
	4.4.5 COMBINED USE OF OPERATORS
	4.4.6 EXTENDED RA OPERATIONS

	4.5 RELATIONAL VIEWS AND INTEGRITY CONSTRAINTS
	4.5.1 VIRTUAL VIEWS AND MATERIALIZED VIEWS
	4.5.2 INTEGRITY CONSTRAINTS

	4.6 FUNCTIONAL DEPENDENCIES
	4.6.1 DEFINITION OF FUNCTIONAL DEPENDENCY
	4.6.2 KEYS AND FUNCTIONAL DEPENDENCIES
	4.6.3 INFERENCE RULES:ARMSTRONG AXIOMS
	4.6.4 CLOSURES AND CANONICAL COVER
	4.6.5 ALGORITHMS FOR FINDING KEYS FROM FUNCTIONAL DEPENDENCIES
	4.6.6 REFERENTIAL INTEGRITY

	4.7 BASICS OF RELATIONAL DATABASE DESIGN
	4.7.1 WHAT IS THE MEANING OF A GOOD DESIGN AND WHY STUDY IT?
	4.7.2 BOYCE-CODD NORMAL FORM (BCNF)AND THIRD NORMAL FORM (3NF)
	4.7.3 REMARKS ON NORMAL FORMS AND DENORMALIZATION
	4.7.4 DESIRABLE FEATURES FOR DECOMPOSITION -- "GLOBAL"DESIGN CRITERIA
	4.7.4.1 Lossless-join decomposition
	4.7.4.2 Dependency preservation

	4.7.5 DECOMPOSITION ALGORITHMS

	4.8 MULTIVALUED DEPENDENCIES
	4.8.1 VARIOUS FORMS OF DEPENDENCIES
	4.8.2 MULTIVALUED DEPENDENCIES
	4.8.2.1 Comparison between FD and MVD
	4.8.2.2 Important properties

	4.8.3 FOURTH NORMAL FORM (4NF)
	4.8.3.1 Definition of 4NF
	4.8.3.2 Decomposition into 4NF

	4.9 REMARK ON OBJECT-ORIENTED LOGICAL DATA MODELING
	4.10 BASICS OF DEDUCTIVE DATABASES
	4 .10.1 LIMITATION OF RA AND SQL
	4.10.2 BASICS OF DATALOG
	4.10.2.1 EDB and IDB
	4.10.2.2 Recursion
	4.10.2.3 Recursive queries with negation in rule body:Using stratification

	4.10.3 DEDUCTIVE QUERY EVALUATION
	4.10.3.1 Bottom-up versus top-down
	4.10.3.2 Magic sets approach for recursive query processing

	4.11 KNOWLEDGE REPRESENTATION MEETS DATABASES
	SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	Chapter 5
	Chapter 6

	Part II
	Chapter 7
	Chapter 8
	Chapter 9

	Part III
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Part IV
	Chapter 14

	1799_PDF_C05.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	RETRIEVAL SYSTEMS
	5.1 OVERVIEW
	5.2 DATABASE MANAGEMENT SYSTEMS (DBMS)
	5.2.1 BASICS OF DATABASE MANAGEMENT SYSTEMS
	5.2.2 THREE LEVELS OF DATA ABSTRACTION
	5.2.3 SCHEMA VERSUS INSTANCES
	5.2.4 DATA MODELS
	5.2.5 DATABASE LANGUAGES
	5.2.6 COMPONENTS OF DATABASE MANAGEMENT SYSTEMS

	5.3 COMMERCIAL LANGUAGES FOR DATA MANAGEMENT SYSTEMS
	5.3.1 BASIC REMARKS ON COMMERCIAL LANGUAGES
	5.3.2 BASIC STRUCTURE OF SQL QUERY
	5.3.3 EXAMPLES OF SQL QUERIES
	5.3.4 WRITING SIMPLE SQL QUERIES
	5.3.5 WORKING WITH SQL PROGRAMS:GENERAL STEPS
	5.3.6 REMARKS ON INTEGRITY CONSTRAINTS
	5.3.7 AGGREGATE FUNCTIONS
	5.3.8 REMARKS ON ENHANCEMENT OF SQL

	5.4 BASICS OF PHYSICAL DATABASE DESIGN
	5.4.1 STORAGE MEDIA
	5.4.2 FILE STRUCTURES AND INDEXING
	5.4.3 TUNING DATABASE SCHEMA

	5.5 AN OVERVIEW OF QUERY PROCESSING AND TRANSACTION PROCESSING
	5.5.1 QUERY PROCESSING
	5.5.2 BASICS OF TRANSACTION PROCESSING
	5.5.3 HOW TRANSACTION PROCESSING IS RELATED TO QUERY PROCESSING

	5.6 INFORMATION RETRIEVAL (IR)
	5.6.1 DIFFERENCES BETWEEN DBMS AND IR SYSTEMS
	5.6.2 BASICS OF INFORMATION RETRIEVAL
	5.6.3 WEB SEARCHING,DATABASE RETRIEVAL,AND IR

	5.7 DATA WAREHOUSING
	5.7.1 BASICS OF PARALLEL AND DISTRIBUTED DATABASES
	5.7.1.1 Basics of parallel databases
	5.7.1.2 Distributed database systems

	5.7.2 DATA WAREHOUSING AND DECISION SUPPORT
	5.7.3 MIDDLEWARE

	5.8 RULE-BASED EXPERT SYSTEMS
	5.8.1 FROM DATA AND INFORMATION RETRIEVAL TO KNOWLEDGE RETRIEVAL
	5.8.2 DEDUCTIVE RETRIEVAL SYSTEMS
	5.8.3 RELATIONSHIP WITH KEY INTERESTS IN COMPUTATIONAL INTELLIGENCE
	5.8.4 BASICS OF EXPERT SYSTEMS
	5.8.5 PRODUCTION SYSTEM MODEL
	5.8.5.1 Important components
	5.8.5.2 The recognize-act cycle
	5.8.5.3 The need for a separate knowledge base

	5.8.6 KNOWLEDGE ENGINEERING
	5.8.7 BUILDING RULE-BASED EXPERT SYSTEMS
	5.8.7.1 Expert system architecture
	5.8.7.2 Some important features of rule-based systems
	5.8.7.3 A simple example
	5.8.7.4 Expert system shells
	5.8.7.5 Explanation facility

	5.8.8 SOME OTHER ASPECTS
	5.8.8.1 Weak methods,Strong methods and Role-limiting methods
	5.8.8.2 Remarks on other features of expert systems

	5.8.9 CLIPS:A BRIEF OVERVIEW

	5.9 KNOWLEDGE MANAGEMENT AND ONTOLOGIES
	5.9.1 WHAT IS KNOWLEDGE MANAGEMENT?
	5.9.2 INFORMATION TECHNOLGOY FOR KNOWLEDGE MANAGEMENT
	5.9.3 DATA AND KNOWLEDGE MANAGEMENT ONTOLOGIES

	SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	Chapter 6

	Part II
	Chapter 7
	Chapter 8
	Chapter 9

	Part III
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Part IV
	Chapter 14

	1799_PDF_C06.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	CONCEPTUAL DATA AND KNOWLEDGE MODELING
	6.1 OVERVIEW
	6.2 ENTITY-RELATIONSHIP DATA MODELING
	6.2.1 WHAT IS THE ENTITY-RELATIONSHIP (ER)APPROACH?
	6.2.2 A SIMPLE EXAMPLE
	6.2.3 MAJOR CONSTRUCTS
	6.2.4 SOME IMPORTANT CONCEPTS
	6.2.5 DESIGN ISSUES IN ER MODELING
	6.2.6 MAPPING ER DIAGRAMS INTO RELATIONS
	6.2.7 KEYS IN CONVERTED TABLES
	6.2.8 AN EXAMPLE:A BANKING ENTERPRISE
	6.2.8.1 Data requirements
	6.2.8.2 ER Diagram for banking enterprise
	6.2.8.3 Converting to tables

	6.2.9 EXTENDED ER FEATURES AND RELATIONSHIP WITH OBJECT-ORIENTED MODELING

	6.3 REMARK ON LEGACY DATA MODELS
	6.4 KNOWLEDGE MODELING FOR KNOWLEDGE REPRESENTATION
	6.5 STRUCTURED KNOWLEDGE REPRESENTATION
	6.5.1 SOME IMPORTANT ISSUES INVOLVED IN KNOWLEDGE REPRESENTATION AND REASONING
	6.5.2 BASICS OF STRUCTURED KNOWLEDGE REPRESENTATION SCHEMES

	6.6 FRAME SYSTEMS
	6.6.1 BASICS OF FRAMES
	6.6.2 CLASSES,SUBCLASSES AND INSTANCES
	6.6.3 INHERITANCE,MULTI-LEVEL AND MULTIPLE INHERITANCE
	6.6.3.1 Inheritance in frame systems
	6.6.3.2 Multiple inheritance

	6.7 CONCEPTUAL GRAPHS
	6.7.1 WHAT IS A CONCEPTUAL GRAPH?
	6.7.2 USING LINEAR FORM TO REPRESENT CONCEPTUAL GRAPHS
	6.7.3 OPERATIONS
	6.7.4 LOGIC-RELATED ASPECTS
	6.7.4.1 Propositional node
	6.7.4.2 Inference rules
	6.7.4.3 Converting to predicate logic

	6.7.5 REMARKS ON SYNERGY OF FRAME SYSTEMS, CONCEPTUAL GRAPHS AND OBJECT ORIENTATION

	6.8 USER MODELING AND FLEXIBLE INFERENCE CONTROL
	SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	Part II
	Chapter 7
	Chapter 8
	Chapter 9

	Part III
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Part IV
	Chapter 14

	1799_PDF_C07.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Part II
	Chapter 7
	REASONING AS EXTENDED RETRIEVAL
	7.1 OVERVIEW
	7.2 BEYOND EXACT RETRIEVAL
	7.2.1 SOME FORMS OF NON-EXACT RETRIEVAL
	7.2.2 BASICS OF ANALOGICAL REASONING

	7.3 REASONING AS QUERY-INVOKED MEMORY RE-ORGANIZATION
	7.3.1 REASONING AS EXTENDED RETRIEVAL
	7.3.2 STRUCTURE MAPPING FOR SUGGESTION-GENERATION
	7.3.3 DOCUMENT STORAGE AND RETRIEVAL THROUGH RELATIONAL DATABASE OPERATIONS
	7.3.3.1 Conversion of documents into unstructured databases
	7.3.3.2 Document algebra:an algebra on document stems and relations

	7.3.4 GENERATING SUGGESTIONS
	7.3.4.1 Basic idea and an example
	7.3.4.2 Steps for analogical problem solving
	7.3.4.3 Structure mapping for generating suggestions

	7.4 SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	Chapter 8
	Chapter 9

	Part III
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Part IV
	Chapter 14

	1799_PDF_C08.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Part II
	Chapter 7
	Chapter 8
	COMPUTATIONAL CREATIVITY AND COMPUTER ASSISTED HUMAN INTELLIGENCE
	8.1 OVERVIEW
	8.2 COMPUTATIONAL ASPECTS OF CREATIVITY
	8.2.1 REMARKS ON CREATIVITY
	8.2.2 THEORETICAL FOUNDATION FOR STIMULATING HUMAN THINKING
	8.2.3 CREATIVITY IN DECISION SUPPORT SYSTEMS

	8.3 IDEA PROCESSORS
	8.3.1 BASICS OF IDEA PROCESSORS
	8.3.2 COMMON COMPONENTS IN IDEA PROCESSORS
	8.3.3 HOW IDEA PROCESSORS WORK
	8.3.4 THE NATURE OF IDEA PROCESSORS

	8.4 RETROSPECTIVE ANALYSIS FOR SCIENTIFIC DISCOVERY AND TECHNICAL INVENTION
	8.4.1 RETROSPECTIVE ANALYSIS OF TECHNICAL INVENTION
	8.4.2 RETROSPECTIVE ANALYSIS FOR KNOWLEDGE-BASED IDEA GENERATION OF NEW ARTIFACTS
	8.4.3 A PROLOG PROGRAM TO EXPLORE IDEA GENERATION
	8.4.3.1 Frames and inheritance in artifact representation

	8.5 COMBINING CREATIVITY WITH EXPERTISE
	8.5.1 THE NEED FOR COMBINING CREATIVITY WITH EXPERTISE
	8.5.2 STRATEGIC KNOWLEDGE AS KNOWLEDGE RELATED TO CREATIVITY
	8.5.3 STUDYING STRATEGIC HEURISTICS OF CREATIVE KNOWLEDGE
	8.5.4 DIFFICULTIES AND PROBLEMS IN ACQUIRING STRATEGIC HEURISTICS
	8.5.5 THE NATURE OF STRATEGIC HEURISTICS
	8.5.6 TOWARD KNOWLEDGE-BASED ARCHITECTURE COMBINING CREATIVITY AND EXPERTISE

	SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	Chapter 9

	Part III
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Part IV
	Chapter 14

	1799_PDF_C09.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Part II
	Chapter 7
	Chapter 8
	Chapter 9
	CONCEPTUAL QUERIES AND INTENSIONAL ANSWERING
	9.1 OVERVIEW
	9.2 A REVIEW OF QUESTION ANSWERING SYSTEMS
	9.2.1 WHAT IS A QUESTION ANSWERING SYSTEM?
	9.2.2 SOME FEATURES OF QUESTION ANSWERING

	9.3 INTENSIONAL ANSWERING AND CONCEPTUAL QUERY
	9.3.1 MEANING OF INTENSIONAL ANSWERS
	9.3.2 INTENSIONAL ANSWERING USING KNOWLEDGE DISCOVERY
	9.3.3 CONCEPTUAL QUERY ANSWERING
	9.3.4 DUALITY BETWEEN CONCEPTUAL QUERIES AND INTENSIONAL ANSWERS
	9.3.4.1 The duality principle
	9.3.4.2 Constructing conceptual queries from intensional answers
	9.3.4.3 Query-invoked generation of intensional answers

	9.4 AN APPROACH FOR INTENSIONAL CONCEPTUAL QUERY ANSWERING
	9.4.1 INTRODUCTION
	9.4.2 CONSTRUCTING AN ABSTRACT DATABASE FOR INTENSIONAL ANSWERS
	9.4.3 GENERATING INTENSIONAL ANSWERS FOR CONCEPTUAL QUERIES
	9.4.4 METHOD FOR INTENSIONAL CONCEPTUAL QUERY ANSWERING

	SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	Part III
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Part IV
	Chapter 14

	1799_PDF_C10.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Part II
	Chapter 7
	Chapter 8
	Chapter 9

	Part III
	Chapter 10
	FROM MACHINE LEARNING TO DATA MINING
	10.1 OVERVIEW
	10.2 BASICS OF MACHINE LEARNING
	10.2.1 MACHINE LEARNING:DEFINITION AND APPROACHES

	10.3 INDUCTIVE LEARNING
	10.3.1 GENERALIZATION FOR INDUCTION
	10.3.2 CANDIDATE ELIMINATION ALGORITHM
	10.3.3 ID3 ALGORITHM AND C4.5

	10.4 EFFICIENCY AND EFFECTIVENESS OF INDUCTIVE LEARNING
	10.4.1 INDUCTIVE BIAS
	10.4.2 THEORY OF LEARNABILITY
	10.4.2.1 Why theory of learning is important
	10.4.2.2 PAC learning

	10.5 OTHER MACHINE LEARNING APPROACHES
	10.5.1 MACHINE LEARNING IN NEURAL NETWORKS
	10.5.1.1 Review of neural networks
	10.5.1.2 Supervised learning
	10.5.1.3 Unsupervised learning

	10.5.2 EVOLUTIONARY ALGORITHMS FOR MACHINE LEARNING
	10.5.2.1 Basics of evolutionary algorithms
	10.5.2.2 Genetic algorithms

	10.5.3 SUMMARY OF MACHINE LEARNING METHODS

	10.6 FEATURES OF DATA MINING
	10.6.1 THE POPULARITY OF DATA MINING
	10.6.2 KDD VERSUS DATA MINING
	10.6.3 DATA MINING VERSUS MACHINE LEARNING
	10.6.4 DATA MINING VERSUS EXTENDED RETRIEVAL
	10.6.5 DATA MINING VERSUS STATISTIC ANALYSIS AND INTELLIGENT DATA ANALYSIS
	10.6.6 DATA MINING MECHANISM:DATA MINING FROM A DATABASE PERSPECTIVE
	10.6.7 SUMMARY OF FEATURES

	10.7 CATEGORIZING DATA MINING TECHNIQUES
	10.7.1 WHAT IS TO BE DISCOVERED
	10.7.2 DISCOVERY OR PREDICTION
	10.7.3 SYMBOLIC,CONNECTIONISM AND EVOLUTIONARY ALGORITHMS
	10.7.4 CLASSIFYING DATA MINING METHODS

	10.8 ASSOCIATION RULES
	10.8.1 TERMINOLOGY
	10.8.2 FINDING ASSOCIATION RULES USING APRIORI ALGORITHM
	10.8.3 MORE ADVANCED STUDIES OF ASSOCIATION RULES
	10.8.3.1 Extension of association rules
	10.8.3.2 Sampling techniques in finding association rules
	10.8.3.3 Variations of association rules
	10.8.3.4 Clustering and representative association rules
	10.8.3.5 Association rules and data mining mechanism

	SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	Chapter 11
	Chapter 12
	Chapter 13

	Part IV
	Chapter 14

	1799_PDF_C11.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Part II
	Chapter 7
	Chapter 8
	Chapter 9

	Part III
	Chapter 10
	Chapter 11
	DATA WAREHOUSING ,OLAP AND DATA MINING
	11.1 OVERVIEW
	11.2 DATA MINING IN DATA WAREHOUSES
	11.2.1.1 Research issues

	11.3 DECISION SUPPORT QUERIES,DATA WAREHOUSE AND OLAP
	11.3.1 DECISION SUPPORT QUERIES
	11.3.2 ARCHITECTURE OF DATA WAREHOUSES
	11.3.2.1 Components in data warehouses
	11.3.2.2 Relationship between data warehousing and OLAP

	11.3.3 BASICS OF OLAP
	11.3.3.1 Terminology
	11.3.3.2 OLAP operations
	11.3.3.4 Star schema and snowflake schema
	11.3.3.5 Granularity and aggregation levels

	11.4 DATA WAREHOUSE AS MATERIALIZED VIEWS AND INDEXING
	11.4.1 REVIEW OF A POPULAR DEFINITION
	11.4.2 MATERIALIZED VIEWS
	11.4.2.1 The necessity of using materialized views
	11.4.2.2 The many facets of materialized views
	11.4.2.3 Materialized views and data warehousing
	11.4.2.4 Integrated data and knowledge management in data warehouses

	11.4.3 MAINTENANCE OF MATERIALIZED VIEWS
	11.4.4 NORMALIZATION AND DENORMALIZATION OF MATERIALIZED VIEWS
	11.4.4.1 Normalization versus denormalization
	11.4.4.2 Physical implementation of materialized views

	11.4.5 INDEXING TECHNIQUES FOR IMPLEMENTATION

	11.5 REMARKS ON PHYSICAL DESIGN OF DATA WAREHOUSES
	11.6 SEMANTIC DIFFERENCES BETWEEN DATA MINING AND OLAP
	11.6.1 DIFFERENT TYPES OF QUERIES CAN BE ANSWERED AT DIFFERENT LEVELS
	11.6.2 AGGREGATION SEMANTICS
	11.6.2.1 Aggregation semantics for classification rules
	11.6.2.2 Aggregation semantics for association rules
	11.6.2.3 Sensitivity analysis
	11.6.2.4 Different assumptions or heuristics may be needed at different levels

	11.7 NONMONOTONIC REASONING IN DATA WAREHOUSING ENVIRONMENT
	11.8 COMBINING DATA MINING AND OLAP
	11.8.1 AN ARCHITECTURE COMBINING OLAP AND DATA MINING
	11.8.2 SOME SPECIFIC ISSUES
	11.8.2.1 On the use and reuse of intensional historical data
	11.8.2.2 How data mining can benefit OLAP
	11.8.2.3 OLAP-enriched data mining

	11.9 CONCEPTUAL QUERY ANSWERING IN DATA WAREHOUSES
	11.9.1 MATERIALIZED VIEWS AND INTENSIONAL ANSWERING
	11.9.2 REWRITING CONCEPTUAL QUERY USING MATERIALIZED VIEWS

	11.10 WEB MINING
	11.10.1 BASIC APPROACHES FOR WEB MINING
	11.10.2 DISCOVERY TECHNIQUES ON WEB TRANSACTIONS

	SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	Chapter 12
	Chapter 13

	Part IV
	Chapter 14

	1799_PDF_C12.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Part II
	Chapter 7
	Chapter 8
	Chapter 9

	Part III
	Chapter 10
	Chapter 11
	Chapter 12
	REASONING UNDER UNCERTAINTY
	12.1 OVERVIEW
	12.2 GENERAL REMARKS ON UNCERTAIN REASONING
	12.2.1 LOGIC AND UNCERTAINTY
	12.2.2 DIFFERENT TYPES OF UNCERTAINTY AND ONTOLOGIES OF UNCERTAINTY
	12.2.3 UNCERTAINTY AND SEARCH

	12.3 UNCERTAINTY BASED ON PROBABILITY THEORY
	12.3.1 BASICS OF PROBABILITY THEORY
	12.3.2 BAYESIAN APPROACH
	12.3.3 BAYESIAN NETWORKS
	12.3.3.1 Assumptions
	12.3.3.2 Some key concepts in Bayesian networks
	12.3.3.3 Constructing a Bayesian network
	12.3.3.4 Implementing Bayesian networks
	12.3.3.5 The notion of d-separation

	12.3.4 BAYESIAN NETWORK APPROACH FOR DATA MINING
	12.3.4.1 Introduction
	12.3.4.2 An agent-based model for data mining using Bayesian networks
	12.3.4.3 An example

	12.3.5 A BRIEF REMARK ON INFLUENCE DIAGRAM AND DECISION THEORY
	12.3.6 PROBABILITY THEORY WITH MEASURED BELIEF AND DISBELIEF
	12.3.6.1 Certainty factors
	12.3.6.2 Dempster-Shafer Theory

	12.4 FUZZY SET THEORY
	12.4.1 FUZZY SETS
	12.4.1.1 Probability reasoning versus fuzzy reasoning
	12.4.1.2 Conceptualization in fuzzy terms using linguistic variables
	12.4.1.3 Characteristic functions of fuzzy sets
	12.4.1.4 Fuzzy decision making systems

	12.4.2 FUZZY SET OPERATIONS
	12.4.2.1 Basic operations
	12.4.2.2 Triangular norms

	12.4.3 RESOLUTION IN POSSIBILISTIC LOGIC
	12.4.3.1 Possibility and necessity
	12.4.3.2 Remark on possibilistic logic
	12.4.3.3 An example

	12.5 FUZZY RULES AND FUZZY EXPERT SYSTEMS
	12.5.1 FUZZY RELATIONS
	12.5.2 SYNTAX AND SEMANTICS OF FUZZY RULES
	12.5.2.1 Fuzzy system components
	12.5.2.2 Syntax of fuzzy rules
	12.5.2.3 Fuzzy inference and fuzzy relations
	12.5.2.4 Fuzzy implication

	12.5.3 FUZZY INFERENCE METHODS
	12.5.3.1.Fuzzy inference laws
	12.5.3.2.Combining inference results
	12.5.3.3 Fuzzy rule evaluation

	12.6 USING FUZZYCLIPS
	12.7 FUZZY CONTROLLERS
	12.7.1 BASICS OF FUZZY CONTROLLER
	12.7.2 BUILDING FUZZY CONTROLLER USING FUZZYCLIPS
	12.7.3 FUZZY CONTROLLER DESIGN PROCESS

	12.8 THE NATURE OF FUZZY LOGIC
	12.8.1 THE INCONSISTENCY OF FUZZY LOGIC
	12.8.2 WHY FUZZY LOGIC HAS BEEN SUCCESSFUL IN EXPERT SYSTEMS
	12.8.3 IMPLICATION TO MAINSTREAM COMPUTATIONAL INTELLIGENCE

	SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	Chapter 13

	Part IV
	Chapter 14

	1799_PDF_C13.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Part II
	Chapter 7
	Chapter 8
	Chapter 9

	Part III
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	REDUCTION AND RECONSTRUCTION APPROACHES FOR UNCERTAIN REASONING AND DATA MINING
	13.1 OVERVIEW
	13.2 THE REDUCTION-RECONSTRUCT I ON DUALITY
	13.2.1 REDUCTION AND RECONSTRUCTION ASPECTS IN FUZZY SET THEORY
	13.2.2 RECONSTRUCTION AND DATA MINING

	13.3 SOME KEY IDEAS OF K-SYSTEMS THEORY AND ROUGH SET THEORY
	13.3.1 RECONSTRUCTABILITY ANALYSIS USING K-SYSTEMS THEORY
	13.3.2 REDUCTION-DRIVEN APPROACH IN ROUGH SET THEORY
	13.3.3 K-SYSTEMS THEORY VERSUS ROUGH SET THEORY

	13.4 ROUGH SETS APPROACH
	13.4.1 BASIC IDEA OF ROUGH SETS
	13.4.2 TERMINOLOGY
	13.4.3 AN EXAMPLE
	13.4.4 RULE INDUCTION USING ROUGH SET APPROACH
	13.4.5 APPLICATIONS OF ROUGH SETS

	13.5 K-SYSTEMS THEORY
	SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	Part IV
	Chapter 14

	1799_PDF_C14.pdf
	Computational Intelligence for Decision Support
	Table of Contents
	Part I
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Part II
	Chapter 7
	Chapter 8
	Chapter 9

	Part III
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Part IV
	Chapter 14
	TOWARD INTEGRATED HEURISTIC DECISION MAKING
	14.1 OVERVIEW
	14.2 INTEGRATED PROBLEM SOLVING
	14.3 HIGH LEVEL HEURISTICS FOR PROBLEM SOLVING AND DECISION SUPPORT
	14.3.1 A RETURN TO GENERAL PROBLEM SOLVER
	14.3.2 SOME HIGH LEVEL HEURISTICS
	14.3.2.1 Solving problems by analogical reasoning
	14.3.2.2 Solving a problem using retrospective analysis
	14.3.2.3 Cartesian product
	14.3.2.4 Solving a problem directly using perturbation
	14.3.2.5 Solving a problem indirectly by using approximation
	14.3.2.6 Using abstraction as problem solving infrastracture
	14.3.2.7 Inverse problems
	14.3.2.8 Storage versus recomputation
	14.3.2.9 Step-wise refinement and manipulation of changes

	14.3.3 SUMMARY OF HEURISTICS

	14.4 META-ISSUES FOR DECISION MAKING
	14.4.1 META-ISSUES IN DATABASES AND DATA WAREHOUSES
	14.4.1.1 Meta-data
	14.4.1.2 Meta-databases
	14.4.1.3 Meta-searching in the Internet

	14.4.2 META-KNOWLEDGE AND META-REASONING
	14.4.2.1 General remarks
	14.4.2.2 Meta-level reasoning for flexible inference control using fuzzy logic
	14.4.2.3 Combining creativity and expertise using a meta-level interpreter

	14.4.3META-KNOWLEDGE AND META-PATTERNS IN DATA MINING
	14.4.3.1 Meta-queries and meta rules
	14.3.3.2 Template design for mining association rules

	14.4.4 META-LEARNING
	14.4.5 SUMMARY AND REMARK ON META-ISSUES

	SUMMARY
	SELF-EXAMINATION QUESTIONS
	REFERENCES

	© 2000 by CRC Press LLC: © 2000 by CRC Press LLC
	 :

